refactor model_dtype, fix PPO trainer

This commit is contained in:
hiyouga 2023-10-11 23:16:01 +08:00
parent 5310e4d182
commit 2818af0b09
10 changed files with 104 additions and 119 deletions

View File

@ -3,6 +3,19 @@ import torch
from typing import TYPE_CHECKING, Tuple from typing import TYPE_CHECKING, Tuple
from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList from transformers import InfNanRemoveLogitsProcessor, LogitsProcessorList
try:
from transformers.utils import (
is_torch_bf16_cpu_available,
is_torch_bf16_gpu_available,
is_torch_cuda_available,
is_torch_npu_available
)
_is_fp16_available = is_torch_npu_available() or is_torch_cuda_available()
_is_bf16_available = is_torch_bf16_gpu_available() or is_torch_bf16_cpu_available
except ImportError:
_is_fp16_available = torch.cuda.is_available()
_is_bf16_available = torch.cuda.is_bf16_supported()
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers.modeling_utils import PreTrainedModel from transformers.modeling_utils import PreTrainedModel
@ -49,7 +62,22 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param return trainable_params, all_param
def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
r"""
Infers the optimal dtype according to the model_dtype and device compatibility.
"""
if _is_bf16_available and model_dtype == torch.bfloat16:
return torch.bfloat16
elif _is_fp16_available:
return torch.float16
else:
return torch.float32
def get_logits_processor() -> LogitsProcessorList: def get_logits_processor() -> LogitsProcessorList:
r"""
Gets logits processor that removes NaN and Inf logits.
"""
logits_processor = LogitsProcessorList() logits_processor = LogitsProcessorList()
logits_processor.append(InfNanRemoveLogitsProcessor()) logits_processor.append(InfNanRemoveLogitsProcessor())
return logits_processor return logits_processor

View File

@ -138,11 +138,11 @@ class LlamaFlashAttention2(LlamaAttention):
input_dtype = query_states.dtype input_dtype = query_states.dtype
if input_dtype == torch.float32: if input_dtype == torch.float32:
logger.warning_once("The input hidden states seems to be silently casted in float32.") logger.warning_once("The input hidden states seems to be silently casted in float32.")
query_states = query_states.to(torch.float16) query_states = query_states.to(self.config.torch_dtype)
key_states = key_states.to(torch.float16) key_states = key_states.to(self.config.torch_dtype)
value_states = value_states.to(torch.float16) value_states = value_states.to(self.config.torch_dtype)
if getattr(self, "num_key_value_groups"): if getattr(self, "num_key_value_groups", None):
key_states = repeat_kv(key_states, self.num_key_value_groups) key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups)

View File

@ -67,9 +67,9 @@ class ModelArguments:
default=None, default=None,
metadata={"help": "Auth token to log in with Hugging Face Hub."} metadata={"help": "Auth token to log in with Hugging Face Hub."}
) )
layernorm_dtype: Optional[Literal["auto", "fp16", "bf16", "fp32"]] = field( upcast_layernorm: Optional[bool] = field(
default="auto", default=False,
metadata={"help": "Data type of the layer norm weights."} metadata={"help": "Whether to upcast the layernorm weights in fp32."}
) )
def __post_init__(self): def __post_init__(self):

View File

@ -24,7 +24,7 @@ except ImportError: # https://github.com/huggingface/transformers/releases/tag/v
from transformers.deepspeed import is_deepspeed_zero3_enabled from transformers.deepspeed import is_deepspeed_zero3_enabled
from llmtuner.extras.logging import reset_logging, get_logger from llmtuner.extras.logging import reset_logging, get_logger
from llmtuner.extras.misc import count_parameters from llmtuner.extras.misc import count_parameters, infer_optim_dtype
from llmtuner.extras.patches import llama_patch as LlamaPatches from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.extras.save_and_load import load_valuehead_params from llmtuner.extras.save_and_load import load_valuehead_params
from llmtuner.hparams import FinetuningArguments from llmtuner.hparams import FinetuningArguments
@ -86,11 +86,17 @@ def load_model_and_tokenizer(
if getattr(config, "model_type", None) == "chatglm": if getattr(config, "model_type", None) == "chatglm":
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer) tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
# Set model dtype
if model_args.compute_dtype is not None:
setattr(config, "torch_dtype", model_args.compute_dtype)
else: # priority: bf16 > fp16 > fp32
optim_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
setattr(config, "torch_dtype", optim_dtype)
# Fix config (for Qwen) # Fix config (for Qwen)
if getattr(config, "model_type", None) == "qwen": if getattr(config, "model_type", None) == "qwen":
setattr(config, "fp16", model_args.compute_dtype == torch.float16) for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, "bf16", model_args.compute_dtype == torch.bfloat16) setattr(config, dtype_name, getattr(config, "torch_dtype", None) == dtype)
setattr(config, "fp32", model_args.compute_dtype == torch.float32)
# Set RoPE scaling # Set RoPE scaling
if model_args.rope_scaling is not None: if model_args.rope_scaling is not None:
@ -131,9 +137,7 @@ def load_model_and_tokenizer(
if model_args.flash_attn: if model_args.flash_attn:
if getattr(config, "model_type", None) == "llama": if getattr(config, "model_type", None) == "llama":
LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2 LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2
LlamaModule.LlamaModel._prepare_decoder_attention_mask = ( LlamaModule.LlamaModel._prepare_decoder_attention_mask = LlamaPatches._prepare_decoder_attention_mask
LlamaPatches._prepare_decoder_attention_mask
)
logger.info("Using FlashAttention-2 for faster training and inference.") logger.info("Using FlashAttention-2 for faster training and inference.")
elif getattr(config, "model_type", None) == "qwen": elif getattr(config, "model_type", None) == "qwen":
logger.info("Qwen models automatically enable FlashAttention if installed.") logger.info("Qwen models automatically enable FlashAttention if installed.")
@ -180,7 +184,6 @@ def load_model_and_tokenizer(
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
model_to_load, model_to_load,
config=config, config=config,
torch_dtype=model_args.compute_dtype,
low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()), low_cpu_mem_usage=(not is_deepspeed_zero3_enabled()),
**config_kwargs **config_kwargs
) )
@ -203,7 +206,7 @@ def load_model_and_tokenizer(
# Initialize adapters # Initialize adapters
if is_trainable: if is_trainable:
model = prepare_model_for_training(model, model_args.layernorm_dtype, finetuning_args.finetuning_type) model = prepare_model_for_training(model, model_args.upcast_layernorm, finetuning_args.finetuning_type)
model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable) model = init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
model = model.train() if is_trainable else model.eval() model = model.train() if is_trainable else model.eval()

View File

@ -8,16 +8,6 @@ from transformers import HfArgumentParser, Seq2SeqTrainingArguments
from transformers.utils.versions import require_version from transformers.utils.versions import require_version
from transformers.trainer_utils import get_last_checkpoint from transformers.trainer_utils import get_last_checkpoint
try:
from transformers.utils import is_torch_bf16_gpu_available, is_torch_npu_available, is_torch_cuda_available
is_fp16_available = is_torch_cuda_available()
is_bf16_available = is_torch_bf16_gpu_available()
is_npu_available = is_torch_npu_available()
except ImportError:
is_fp16_available = torch.cuda.is_available()
is_bf16_available = torch.cuda.is_bf16_supported()
is_npu_available = False
from llmtuner.extras.logging import get_logger from llmtuner.extras.logging import get_logger
from llmtuner.hparams import ( from llmtuner.hparams import (
ModelArguments, ModelArguments,
@ -31,17 +21,6 @@ from llmtuner.hparams import (
logger = get_logger(__name__) logger = get_logger(__name__)
def _infer_dtype() -> torch.dtype:
if is_npu_available:
return torch.float16
elif is_bf16_available:
return torch.bfloat16
elif is_fp16_available:
return torch.float16
else:
return torch.float32
def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None) -> Tuple[Any]: def _parse_args(parser: HfArgumentParser, args: Optional[Dict[str, Any]] = None) -> Tuple[Any]:
if args is not None: if args is not None:
return parser.parse_dict(args) return parser.parse_dict(args)
@ -178,12 +157,15 @@ def get_train_args(
if not finetuning_args.resume_lora_training: if not finetuning_args.resume_lora_training:
raise ValueError("Quantized model cannot create new LoRA weight. Merge them first.") raise ValueError("Quantized model cannot create new LoRA weight. Merge them first.")
if model_args.quantization_bit is not None and (not training_args.do_train): if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.") logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16): if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
logger.warning("We recommend enable mixed precision training.") logger.warning("We recommend enable mixed precision training.")
if (not training_args.do_train) and model_args.quantization_bit is not None:
logger.warning("Evaluating model in 4/8-bit mode may cause lower scores.")
# postprocess data_args # postprocess data_args
if data_args.max_samples is not None and data_args.streaming: if data_args.max_samples is not None and data_args.streaming:
logger.warning("`max_samples` is incompatible with `streaming`. Disabling max_samples.") logger.warning("`max_samples` is incompatible with `streaming`. Disabling max_samples.")
@ -206,10 +188,9 @@ def get_train_args(
and os.path.isdir(training_args.output_dir) and os.path.isdir(training_args.output_dir)
and not training_args.overwrite_output_dir and not training_args.overwrite_output_dir
): ):
require_version("transformers>=4.31.0", "Resuming training requires transformers>=4.31.0.")
last_checkpoint = get_last_checkpoint(training_args.output_dir) last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError("Output directory already exists and is not empty. Use `overwrite_output_dir`.") raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
if last_checkpoint is not None: if last_checkpoint is not None:
training_args_dict = training_args.to_dict() training_args_dict = training_args.to_dict()
@ -220,26 +201,7 @@ def get_train_args(
) )
# postprocess model_args # postprocess model_args
if training_args.bf16: model_args.compute_dtype = torch.bfloat16 if training_args.bf16 else (torch.float16 if training_args.fp16 else None)
if not is_bf16_available:
raise ValueError("Current device does not support bf16 training.")
model_args.compute_dtype = torch.bfloat16
elif training_args.fp16:
model_args.compute_dtype = torch.float16
else:
model_args.compute_dtype = _infer_dtype()
if model_args.layernorm_dtype == "bf16":
if not is_bf16_available:
raise ValueError("Current device does not support bf16 type.")
model_args.layernorm_dtype = torch.bfloat16
elif model_args.layernorm_dtype == "fp16":
model_args.layernorm_dtype = torch.float16
elif model_args.layernorm_dtype == "fp32":
model_args.layernorm_dtype = torch.float32
else:
model_args.layernorm_dtype = model_args.compute_dtype
model_args.model_max_length = data_args.cutoff_len model_args.model_max_length = data_args.cutoff_len
# Log on each process the small summary: # Log on each process the small summary:
@ -278,7 +240,4 @@ def get_infer_args(
if model_args.quantization_bit is not None and len(model_args.checkpoint_dir) != 1: if model_args.quantization_bit is not None and len(model_args.checkpoint_dir) != 1:
raise ValueError("Quantized model only accepts a single checkpoint. Merge them first.") raise ValueError("Quantized model only accepts a single checkpoint. Merge them first.")
# auto-detect cuda capability
model_args.compute_dtype = _infer_dtype()
return model_args, data_args, finetuning_args, generating_args return model_args, data_args, finetuning_args, generating_args

View File

@ -31,11 +31,11 @@ def find_all_linear_modules(
def prepare_model_for_training( def prepare_model_for_training(
model: "PreTrainedModel", model: "PreTrainedModel",
layernorm_dtype: torch.dtype, upcast_layernorm: bool,
finetuning_type: str, finetuning_type: str,
output_layer_name: Optional[str] = "lm_head", output_layer_name: Optional[str] = "lm_head",
use_gradient_checkpointing: Optional[bool] = True, use_gradient_checkpointing: Optional[bool] = True,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES layernorm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> "PreTrainedModel": ) -> "PreTrainedModel":
r""" r"""
Includes: Includes:
@ -44,9 +44,10 @@ def prepare_model_for_training(
(3) upcast the lm_head to fp32 (3) upcast the lm_head to fp32
Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33 Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33
""" """
for name, param in model.named_parameters(): if upcast_layernorm:
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names): for name, param in model.named_parameters():
param.data = param.data.to(layernorm_dtype) if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names):
param.data = param.data.to(torch.float32)
if use_gradient_checkpointing: if use_gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"): if hasattr(model, "enable_input_require_grads"):

View File

@ -10,14 +10,15 @@ from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from trl import PPOTrainer from trl import PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits from trl.core import PPODecorators, logprobs_from_logits
from llmtuner.extras.callbacks import LogCallback, SavePeftModelCallback
from llmtuner.extras.logging import get_logger from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
from llmtuner.tuner.ppo.utils import cast_layernorm_dtype, replace_model from llmtuner.tuner.ppo.utils import dump_layernorm, restore_layernorm, replace_model
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback from transformers import Seq2SeqTrainingArguments, TrainerCallback
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import GeneratingArguments from llmtuner.hparams import ModelArguments, GeneratingArguments
logger = get_logger(__name__) logger = get_logger(__name__)
@ -30,10 +31,10 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
def __init__( def __init__(
self, self,
model_args: "ModelArguments",
training_args: "Seq2SeqTrainingArguments", training_args: "Seq2SeqTrainingArguments",
generating_args: "GeneratingArguments", generating_args: "GeneratingArguments",
callbacks: List["TrainerCallback"], callbacks: List["TrainerCallback"],
compute_dtype: torch.dtype,
**kwargs **kwargs
): ):
PPOTrainer.__init__(self, **kwargs) PPOTrainer.__init__(self, **kwargs)
@ -41,11 +42,16 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
raise ValueError("PPOTrainer is incompatible with DeepSpeed.") raise ValueError("PPOTrainer is incompatible with DeepSpeed.")
self.args = training_args self.args = training_args
self.generating_args = generating_args self.model_args = model_args
self.log_callback, self.save_callback = callbacks[0], callbacks[1] self.generation_config = GenerationConfig(
self.compute_dtype = compute_dtype pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
**generating_args.to_dict()
)
self.state = TrainerState() self.state = TrainerState()
self.control = TrainerControl() self.control = TrainerControl()
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, SavePeftModelCallback)
def ppo_train(self) -> None: def ppo_train(self) -> None:
r""" r"""
@ -74,13 +80,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
logger.info(f" Total optimization steps = {max_steps}") logger.info(f" Total optimization steps = {max_steps}")
logger.info(f" Number of trainable parameters = {count_parameters(self.model)[0]}") logger.info(f" Number of trainable parameters = {count_parameters(self.model)[0]}")
# Keyword arguments for `model.generate`
generating_args = self.generating_args.to_dict()
generating_args.update(dict(
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id
))
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model) unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
dataiter = iter(self.dataloader) dataiter = iter(self.dataloader)
steps_trained = 0 steps_trained = 0
@ -98,7 +97,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.model.eval() self.model.eval()
# Get inputs # Get inputs
queries, responses = self.get_inputs(batch, generating_args) queries, responses = self.get_inputs(batch)
self.tokenizer.padding_side = "right" # change padding side self.tokenizer.padding_side = "right" # change padding side
rewards = self.get_rewards(queries, responses, unwrapped_model) rewards = self.get_rewards(queries, responses, unwrapped_model)
@ -159,27 +158,24 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
) )
@torch.no_grad() @torch.no_grad()
def get_inputs( def get_inputs(self, batch: Dict[str, torch.Tensor]) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
self,
batch: Dict[str, torch.Tensor],
generating_args: Dict[str, Any]
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
r""" r"""
Generates model's responses given queries. Generates model's responses given queries.
""" """
gen_kwargs = dict( if self.model_args.upcast_layernorm:
generation_config=GenerationConfig(**generating_args), layernorm_params = dump_layernorm(self.model)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
response: torch.Tensor = unwrapped_model.generate(
generation_config=self.generation_config,
logits_processor=get_logits_processor(), logits_processor=get_logits_processor(),
**batch **batch
) )
input_ids = batch["input_ids"] if self.model_args.upcast_layernorm:
self.model, layer_norm_params = cast_layernorm_dtype(self.model, self.compute_dtype) restore_layernorm(self.model, layernorm_params)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
response: torch.Tensor = unwrapped_model.generate(**gen_kwargs)
self.model, _ = cast_layernorm_dtype(self.model, self.compute_dtype, layer_norm_params)
query, response = input_ids.detach().cpu(), response[:, input_ids.size(-1):].detach().cpu()
query, response = batch["input_ids"].detach().cpu(), response[:, batch["input_ids"].size(-1):].detach().cpu()
queries, responses = [], [] queries, responses = [], []
for i in range(len(query)): for i in range(len(query)):
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0] query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0]

View File

@ -1,40 +1,35 @@
import torch import torch
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple from typing import TYPE_CHECKING, Dict, Literal, Optional
from llmtuner.extras.constants import LAYERNORM_NAMES
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead from trl import AutoModelForCausalLMWithValueHead
def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None: def replace_model(model: "AutoModelForCausalLMWithValueHead", target: Literal["default", "reward"]) -> None:
if target == "reward": # save default head temporarily if target == "reward": # save default head temporarily
valuehead_state_dict = model.v_head.state_dict() valuehead_state_dict: Dict[str, torch.Tensor] = model.v_head.state_dict()
setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone()) setattr(model, "default_head_weight", valuehead_state_dict["summary.weight"].detach().clone())
setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone()) setattr(model, "default_head_bias", valuehead_state_dict["summary.bias"].detach().clone())
model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active model.pretrained_model.set_adapter(target) # set the LoRA adapter to be active
model.v_head.load_state_dict({ model.v_head.load_state_dict({
"summary.weight": getattr(model, "{}_head_weight".format(target)), "summary.weight": model.get_buffer("{}_head_weight".format(target)).detach().clone(),
"summary.bias": getattr(model, "{}_head_bias".format(target)) "summary.bias": model.get_buffer("{}_head_bias".format(target)).detach().clone()
}) })
def cast_layernorm_dtype( def dump_layernorm(model: "PreTrainedModel") -> Dict[str, torch.Tensor]:
model: "AutoModelForCausalLMWithValueHead", layer_norm_params = {}
compute_dtype: torch.dtype,
layer_norm_params: Optional[Dict[str, torch.Tensor]] = None,
layer_norm_names: Optional[List[str]] = LAYERNORM_NAMES
) -> Tuple["AutoModelForCausalLMWithValueHead", Dict[str, torch.Tensor]]:
layer_norm_state_dict = {}
for name, param in model.named_parameters(): for name, param in model.named_parameters():
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names): if param.data.dtype == torch.float32:
if layer_norm_params is None: layer_norm_params[name] = param.data.detach().clone()
layer_norm_state_dict[name] = param.data.detach().clone() # store float32 weights for stability param.data = param.data.to(model.config.torch_dtype)
param.data = param.data.to(compute_dtype)
else:
param.data = layer_norm_params[name] # restore float32 weights
return model, layer_norm_state_dict return layer_norm_params
def restore_layernorm(model: "PreTrainedModel", layernorm_params: Optional[Dict[str, torch.Tensor]] = None) -> None:
for name, param in model.named_parameters():
if name in layernorm_params:
param.data = layernorm_params[name]

View File

@ -65,10 +65,10 @@ def run_ppo(
# Initialize our Trainer # Initialize our Trainer
ppo_trainer = CustomPPOTrainer( ppo_trainer = CustomPPOTrainer(
model_args=model_args,
training_args=training_args, training_args=training_args,
generating_args=generating_args, generating_args=generating_args,
callbacks=callbacks + [SavePeftModelCallback()], callbacks=callbacks + [SavePeftModelCallback()],
compute_dtype=model_args.compute_dtype,
config=ppo_config, config=ppo_config,
model=model, model=model,
ref_model=None, ref_model=None,

View File

@ -145,6 +145,9 @@ class Runner:
) )
args[compute_type] = True args[compute_type] = True
if args["quantization_bit"] is not None:
args["upcast_layernorm"] = True
if args["stage"] == "ppo": if args["stage"] == "ppo":
args["reward_model"] = reward_model args["reward_model"] = reward_model
val_size = 0 val_size = 0