This commit is contained in:
hiyouga 2024-05-16 00:35:28 +08:00
parent 44cfa9a1cd
commit 2a67ab3925
7 changed files with 133 additions and 77 deletions

View File

@ -5,8 +5,8 @@ model_name_or_path: models/llama3-8b-instruct-pro
stage: sft stage: sft
do_train: true do_train: true
finetuning_type: freeze finetuning_type: freeze
name_module_trainable: all freeze_trainable_layers: 8
num_layer_trainable: 8 freeze_trainable_modules: all
use_llama_pro: true use_llama_pro: true
# dataset # dataset

View File

@ -1,5 +1,5 @@
# coding=utf-8 # coding=utf-8
# Performs block expansion for LLaMA, Mistral or Qwen1.5 models. # Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
# Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8 # Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
# Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py # Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
@ -106,8 +106,7 @@ def block_expansion(
print("Fine-tune this model with:") print("Fine-tune this model with:")
print(" --model_name_or_path {} \\".format(output_dir)) print(" --model_name_or_path {} \\".format(output_dir))
print(" --finetuning_type freeze \\") print(" --finetuning_type freeze \\")
print(" --name_module_trainable all \\") print(" --freeze_trainable_layers {} \\".format(num_expand))
print(" --num_layer_trainable {} \\".format(num_expand))
print(" --use_llama_pro") print(" --use_llama_pro")

View File

@ -1,5 +1,4 @@
import json from dataclasses import dataclass, field
from dataclasses import asdict, dataclass, field
from typing import Literal, Optional from typing import Literal, Optional
@ -9,22 +8,40 @@ class FreezeArguments:
Arguments pertaining to the freeze (partial-parameter) training. Arguments pertaining to the freeze (partial-parameter) training.
""" """
name_module_trainable: str = field( freeze_trainable_layers: int = field(
default="all", default=2,
metadata={ metadata={
"help": """Name of trainable modules for partial-parameter (freeze) fine-tuning. \ "help": (
Use commas to separate multiple modules. \ "The number of trainable layers for freeze (partial-parameter) fine-tuning. "
Use "all" to specify all the available modules. \ "Positive numbers mean the last n layers are set as trainable, "
LLaMA choices: ["mlp", "self_attn"], \ "negative numbers mean the first n layers are set as trainable."
BLOOM & Falcon & ChatGLM choices: ["mlp", "self_attention"], \ )
Qwen choices: ["mlp", "attn"], \
InternLM2 choices: ["feed_forward", "attention"], \
Others choices: the same as LLaMA."""
}, },
) )
num_layer_trainable: int = field( freeze_trainable_modules: str = field(
default=2, default="all",
metadata={"help": "The number of trainable layers for partial-parameter (freeze) fine-tuning."}, metadata={
"help": (
"Name(s) of trainable modules for freeze (partial-parameter) fine-tuning. "
"Use commas to separate multiple modules. "
"Use `all` to specify all the available modules. "
"LLaMA choices: [`mlp`, `self_attn`], "
"BLOOM & Falcon & ChatGLM choices: [`mlp`, `self_attention`], "
"Qwen choices: [`mlp`, `attn`], "
"InternLM2 choices: [`feed_forward`, `attention`], "
"Others choices: the same as LLaMA."
)
},
)
freeze_extra_modules: Optional[str] = field(
default=None,
metadata={
"help": (
"Name(s) of modules apart from hidden layers to be set as trainable "
"for freeze (partial-parameter) fine-tuning. "
"Use commas to separate multiple modules."
)
},
) )
@ -37,7 +54,11 @@ class LoraArguments:
additional_target: Optional[str] = field( additional_target: Optional[str] = field(
default=None, default=None,
metadata={ metadata={
"help": "Name(s) of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint." "help": (
"Name(s) of modules apart from LoRA layers to be set as trainable "
"and saved in the final checkpoint. "
"Use commas to separate multiple modules."
)
}, },
) )
lora_alpha: Optional[int] = field( lora_alpha: Optional[int] = field(
@ -55,15 +76,17 @@ class LoraArguments:
lora_target: str = field( lora_target: str = field(
default="all", default="all",
metadata={ metadata={
"help": """Name(s) of target modules to apply LoRA. \ "help": (
Use commas to separate multiple modules. \ "Name(s) of target modules to apply LoRA. "
Use "all" to specify all the linear modules. \ "Use commas to separate multiple modules. "
LLaMA choices: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], \ "Use `all` to specify all the linear modules. "
BLOOM & Falcon & ChatGLM choices: ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"], \ "LLaMA choices: [`q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`], "
Baichuan choices: ["W_pack", "o_proj", "gate_proj", "up_proj", "down_proj"], \ "BLOOM & Falcon & ChatGLM choices: [`query_key_value`, `dense`, `dense_h_to_4h`, `dense_4h_to_h`], "
Qwen choices: ["c_attn", "attn.c_proj", "w1", "w2", "mlp.c_proj"], \ "Baichuan choices: [`W_pack`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`], "
InternLM2 choices: ["wqkv", "wo", "w1", "w2", "w3"], \ "Qwen choices: [`c_attn`, `attn.c_proj`, `w1`, `w2`, `mlp.c_proj`], "
Others choices: the same as LLaMA.""" "InternLM2 choices: [`wqkv`, `wo`, `w1`, `w2`, `w3`], "
"Others choices: the same as LLaMA."
)
}, },
) )
loraplus_lr_ratio: Optional[float] = field( loraplus_lr_ratio: Optional[float] = field(
@ -177,8 +200,10 @@ class GaloreArguments:
galore_target: str = field( galore_target: str = field(
default="all", default="all",
metadata={ metadata={
"help": """Name(s) of modules to apply GaLore. Use commas to separate multiple modules. \ "help": (
Use "all" to specify all the linear modules.""" "Name(s) of modules to apply GaLore. Use commas to separate multiple modules. "
"Use `all` to specify all the linear modules."
)
}, },
) )
galore_rank: int = field( galore_rank: int = field(
@ -238,16 +263,20 @@ class BAdamArgument:
badam_mask_mode: Literal["adjacent", "scatter"] = field( badam_mask_mode: Literal["adjacent", "scatter"] = field(
default="adjacent", default="adjacent",
metadata={ metadata={
"help": """The mode of the mask for BAdam optimizer. \ "help": (
`adjacent` means that the trainable parameters are adjacent to each other, \ "The mode of the mask for BAdam optimizer. "
`scatter` means that trainable parameters are randomly choosed from the weight.""" "`adjacent` means that the trainable parameters are adjacent to each other, "
"`scatter` means that trainable parameters are randomly choosed from the weight."
)
}, },
) )
badam_verbose: int = field( badam_verbose: int = field(
default=0, default=0,
metadata={ metadata={
"help": """The verbosity level of BAdam optimizer. \ "help": (
0 for no print, 1 for print the block prefix, 2 for print trainable parameters""" "The verbosity level of BAdam optimizer. "
"0 for no print, 1 for print the block prefix, 2 for print trainable parameters."
)
}, },
) )
@ -285,7 +314,8 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
return [item.strip() for item in arg.split(",")] return [item.strip() for item in arg.split(",")]
return arg return arg
self.name_module_trainable = split_arg(self.name_module_trainable) self.freeze_trainable_modules = split_arg(self.freeze_trainable_modules)
self.freeze_extra_modules = split_arg(self.freeze_extra_modules)
self.lora_alpha = self.lora_alpha or self.lora_rank * 2 self.lora_alpha = self.lora_alpha or self.lora_rank * 2
self.lora_target = split_arg(self.lora_target) self.lora_target = split_arg(self.lora_target)
self.additional_target = split_arg(self.additional_target) self.additional_target = split_arg(self.additional_target)
@ -315,17 +345,3 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora": if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora":
raise ValueError("`loraplus_lr_ratio` is only valid for the LoRA training.") raise ValueError("`loraplus_lr_ratio` is only valid for the LoRA training.")
def save_to_json(self, json_path: str):
r"""Saves the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, json_path: str):
r"""Creates an instance from the content of `json_path`."""
with open(json_path, "r", encoding="utf-8") as f:
text = f.read()
return cls(**json.loads(text))

View File

@ -1,3 +1,4 @@
import re
from typing import TYPE_CHECKING from typing import TYPE_CHECKING
import torch import torch
@ -68,37 +69,52 @@ def init_adapter(
raise ValueError("Current model does not support freeze tuning.") raise ValueError("Current model does not support freeze tuning.")
if finetuning_args.use_llama_pro: if finetuning_args.use_llama_pro:
if num_layers % finetuning_args.num_layer_trainable != 0: if num_layers % finetuning_args.freeze_trainable_layers != 0:
raise ValueError( raise ValueError(
"`num_layers` {} should be divisible by `num_layer_trainable` {}.".format( "`num_layers` {} should be divisible by `num_layer_trainable` {}.".format(
num_layers, finetuning_args.num_layer_trainable num_layers, finetuning_args.freeze_trainable_layers
) )
) )
stride = num_layers // finetuning_args.num_layer_trainable stride = num_layers // finetuning_args.freeze_trainable_layers
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride) trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
elif finetuning_args.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0 elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = range(num_layers - finetuning_args.num_layer_trainable, num_layers) trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
else: # fine-tuning the first n layers if num_layer_trainable < 0 else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = range(-finetuning_args.num_layer_trainable) trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))
freeze_modules = {"all"} hidden_modules = set()
for name, _ in model.named_modules(): non_hidden_modules = set()
for name, _ in model.named_parameters():
if ".0." in name: if ".0." in name:
freeze_modules.add(name.split(".0.")[-1].split(".")[0]) hidden_modules.add(name.split(".0.")[-1].split(".")[0])
elif ".1." in name: # MoD starts from layer 1 elif ".1." in name: # MoD starts from layer 1
freeze_modules.add(name.split(".1.")[-1].split(".")[0]) hidden_modules.add(name.split(".1.")[-1].split(".")[0])
if re.search(r"\.\d+\.", name) is None:
non_hidden_modules.add(name.split(".")[-2])
trainable_layers = [] trainable_layers = []
for module_name in finetuning_args.name_module_trainable: for module_name in finetuning_args.freeze_trainable_modules:
if module_name not in freeze_modules: if module_name != "all" and module_name not in hidden_modules:
raise ValueError( raise ValueError(
"Module {} is not found, please choose from {}".format(module_name, ", ".join(freeze_modules)) "Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
) )
for idx in trainable_layer_ids: for idx in trainable_layer_ids:
trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else "")) trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))
if finetuning_args.freeze_extra_modules:
for module_name in finetuning_args.freeze_extra_modules:
if module_name not in non_hidden_modules:
raise ValueError(
"Module {} is not found, please choose from {}".format(
module_name, ", ".join(non_hidden_modules)
)
)
trainable_layers.append(module_name)
for name, param in model.named_parameters(): for name, param in model.named_parameters():
if any(trainable_layer in name for trainable_layer in trainable_layers): if any(trainable_layer in name for trainable_layer in trainable_layers):
if cast_trainable_params_to_fp32: if cast_trainable_params_to_fp32:

View File

@ -124,13 +124,17 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Accordion(open=False) as freeze_tab: with gr.Accordion(open=False) as freeze_tab:
with gr.Row(): with gr.Row():
num_layer_trainable = gr.Slider(minimum=1, maximum=128, value=2, step=1) freeze_trainable_layers = gr.Slider(minimum=-128, maximum=128, value=2, step=1)
name_module_trainable = gr.Textbox(value="all") freeze_trainable_modules = gr.Textbox(value="all")
freeze_extra_modules = gr.Textbox()
input_elems.update({num_layer_trainable, name_module_trainable}) input_elems.update({freeze_trainable_layers, freeze_trainable_modules, freeze_extra_modules})
elem_dict.update( elem_dict.update(
dict( dict(
freeze_tab=freeze_tab, num_layer_trainable=num_layer_trainable, name_module_trainable=name_module_trainable freeze_tab=freeze_tab,
freeze_trainable_layers=freeze_trainable_layers,
freeze_trainable_modules=freeze_trainable_modules,
freeze_extra_modules=freeze_extra_modules,
) )
) )

View File

@ -572,24 +572,24 @@ LOCALES = {
"label": "部分参数微调设置", "label": "部分参数微调设置",
}, },
}, },
"num_layer_trainable": { "freeze_trainable_layers": {
"en": { "en": {
"label": "Trainable layers", "label": "Trainable layers",
"info": "The number of trainable layers.", "info": "Number of the last(+)/first(-) hidden layers to be set as trainable.",
}, },
"ru": { "ru": {
"label": "Обучаемые слои", "label": "Обучаемые слои",
"info": "Количество обучаемых слоев.", "info": "Количество последних (+)/первых (-) скрытых слоев, которые будут установлены как обучаемые.",
}, },
"zh": { "zh": {
"label": "可训练层数", "label": "可训练层数",
"info": "可训练模型层的数量。", "info": "最末尾(+/最前端(-)可训练隐藏层的数量。",
}, },
}, },
"name_module_trainable": { "freeze_trainable_modules": {
"en": { "en": {
"label": "Trainable modules", "label": "Trainable modules",
"info": "The name of trainable modules. Use commas to separate multiple modules.", "info": "Name(s) of trainable modules. Use commas to separate multiple modules.",
}, },
"ru": { "ru": {
"label": "Обучаемые модули", "label": "Обучаемые модули",
@ -600,6 +600,26 @@ LOCALES = {
"info": "可训练模块的名称。使用英文逗号分隔多个名称。", "info": "可训练模块的名称。使用英文逗号分隔多个名称。",
}, },
}, },
"freeze_extra_modules": {
"en": {
"label": "Extra modules (optional)",
"info": (
"Name(s) of modules apart from hidden layers to be set as trainable. "
"Use commas to separate multiple modules."
),
},
"ru": {
"label": "Дополнительные модули (опционально)",
"info": (
"Имена модулей, кроме скрытых слоев, которые следует установить в качестве обучаемых. "
"Используйте запятые для разделения нескольких модулей."
),
},
"zh": {
"label": "额外模块(非必填)",
"info": "除隐藏层以外的可训练模块名称。使用英文逗号分隔多个名称。",
},
},
"lora_tab": { "lora_tab": {
"en": { "en": {
"label": "LoRA configurations", "label": "LoRA configurations",

View File

@ -146,8 +146,9 @@ class Runner:
) )
if args["finetuning_type"] == "freeze": if args["finetuning_type"] == "freeze":
args["num_layer_trainable"] = get("train.num_layer_trainable") args["freeze_trainable_layers"] = get("train.freeze_trainable_layers")
args["name_module_trainable"] = get("train.name_module_trainable") args["freeze_trainable_modules"] = get("train.freeze_trainable_modules")
args["freeze_extra_modules"] = get("train.freeze_extra_modules") or None
elif args["finetuning_type"] == "lora": elif args["finetuning_type"] == "lora":
args["lora_rank"] = get("train.lora_rank") args["lora_rank"] = get("train.lora_rank")
args["lora_alpha"] = get("train.lora_alpha") args["lora_alpha"] = get("train.lora_alpha")