fix jinja template

This commit is contained in:
hiyouga 2024-06-19 20:03:50 +08:00
parent 4cff6a4ad5
commit 2b596fb55f
3 changed files with 46 additions and 4 deletions

View File

@ -338,7 +338,11 @@ def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", pl
def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str: def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer") -> str:
jinja_template = _convert_slots_to_jinja(template.format_prefix.apply(), tokenizer) jinja_template = ""
prefix = _convert_slots_to_jinja(template.format_prefix.apply(), tokenizer)
if prefix:
jinja_template += "{{ " + prefix + " }}"
if template.default_system: if template.default_system:
jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}" jinja_template += "{% set system_message = '" + _jinja_escape(template.default_system) + "' %}"

View File

@ -17,6 +17,7 @@ import random
import pytest import pytest
from datasets import load_dataset from datasets import load_dataset
from transformers import AutoTokenizer
from llamafactory.data import get_dataset from llamafactory.data import get_dataset
from llamafactory.hparams import get_train_args from llamafactory.hparams import get_train_args
@ -48,10 +49,11 @@ def test_supervised(num_samples: int):
tokenizer = tokenizer_module["tokenizer"] tokenizer = tokenizer_module["tokenizer"]
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
original_data = load_dataset(TRAIN_ARGS["dataset"], split="train") original_data = load_dataset(TRAIN_ARGS["dataset"], split="train")
indexes = random.choices(range(len(original_data)), k=num_samples) indexes = random.choices(range(len(original_data)), k=num_samples)
for index in indexes: for index in indexes:
decoded_result = tokenizer.decode(tokenized_data["input_ids"][index])
prompt = original_data[index]["instruction"] prompt = original_data[index]["instruction"]
if original_data[index]["input"]: if original_data[index]["input"]:
prompt += "\n" + original_data[index]["input"] prompt += "\n" + original_data[index]["input"]
@ -60,5 +62,6 @@ def test_supervised(num_samples: int):
{"role": "user", "content": prompt}, {"role": "user", "content": prompt},
{"role": "assistant", "content": original_data[index]["output"]}, {"role": "assistant", "content": original_data[index]["output"]},
] ]
templated_result = tokenizer.apply_chat_template(messages, tokenize=False) templated_result = ref_tokenizer.apply_chat_template(messages, tokenize=False)
assert decoded_result == templated_result decoded_result = tokenizer.decode(tokenized_data["input_ids"][index])
assert templated_result == decoded_result

View File

@ -0,0 +1,35 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from transformers import AutoTokenizer
from llamafactory.data import get_template_and_fix_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
def test_jinja_template():
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
get_template_and_fix_tokenizer(tokenizer, name="llama3")
assert tokenizer.chat_template != ref_tokenizer.chat_template
messages = [
{"role": "user", "content": "hi!"},
{"role": "assistant", "content": "hello there"},
]
assert tokenizer.apply_chat_template(messages) == ref_tokenizer.apply_chat_template(messages)