Merge pull request #479 from hiyouga/feature-addCmdExport
add sft script preview in webui
This commit is contained in:
commit
2eb0eca65f
|
@ -1,5 +1,7 @@
|
|||
IGNORE_INDEX = -100
|
||||
|
||||
SFT_SCRIPT_PREFIX = "CUDA_VISIBLE_DEVICES=0 python "
|
||||
|
||||
LOG_FILE_NAME = "trainer_log.jsonl"
|
||||
|
||||
VALUE_HEAD_FILE_NAME = "value_head.bin"
|
||||
|
|
|
@ -61,11 +61,15 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
|||
resume_lora_training = gr.Checkbox(value=True, scale=1)
|
||||
|
||||
with gr.Row():
|
||||
preview_script_btn = gr.Button()
|
||||
start_btn = gr.Button()
|
||||
stop_btn = gr.Button()
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=3):
|
||||
with gr.Box():
|
||||
preview_script_box = gr.Textbox()
|
||||
|
||||
with gr.Row():
|
||||
output_dir = gr.Textbox()
|
||||
|
||||
|
@ -78,6 +82,44 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
|||
with gr.Column(scale=1):
|
||||
loss_viewer = gr.Plot()
|
||||
|
||||
preview_script_btn.click(
|
||||
runner.preview_sft_script,
|
||||
[
|
||||
top_elems["lang"],
|
||||
top_elems["model_name"],
|
||||
top_elems["checkpoints"],
|
||||
top_elems["finetuning_type"],
|
||||
top_elems["quantization_bit"],
|
||||
top_elems["template"],
|
||||
top_elems["source_prefix"],
|
||||
dataset_dir,
|
||||
dataset,
|
||||
max_source_length,
|
||||
max_target_length,
|
||||
learning_rate,
|
||||
num_train_epochs,
|
||||
max_samples,
|
||||
batch_size,
|
||||
gradient_accumulation_steps,
|
||||
lr_scheduler_type,
|
||||
max_grad_norm,
|
||||
val_size,
|
||||
logging_steps,
|
||||
save_steps,
|
||||
warmup_steps,
|
||||
compute_type,
|
||||
padding_side,
|
||||
lora_rank,
|
||||
lora_dropout,
|
||||
lora_target,
|
||||
resume_lora_training,
|
||||
output_dir
|
||||
],
|
||||
[
|
||||
preview_script_box
|
||||
]
|
||||
)
|
||||
|
||||
start_btn.click(
|
||||
runner.run_train,
|
||||
[
|
||||
|
@ -154,5 +196,7 @@ def create_sft_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[
|
|||
stop_btn=stop_btn,
|
||||
output_dir=output_dir,
|
||||
output_box=output_box,
|
||||
loss_viewer=loss_viewer
|
||||
loss_viewer=loss_viewer,
|
||||
preview_script_btn=preview_script_btn,
|
||||
preview_script_box=preview_script_box
|
||||
)
|
||||
|
|
|
@ -500,6 +500,22 @@ LOCALES = {
|
|||
"zh": {
|
||||
"value": "开始导出"
|
||||
}
|
||||
},
|
||||
"preview_script_btn": {
|
||||
"en": {
|
||||
"value": "preview train script"
|
||||
},
|
||||
"zh": {
|
||||
"value": "预览训练脚本命令"
|
||||
}
|
||||
},
|
||||
"preview_script_box": {
|
||||
"en": {
|
||||
"label": "SFT Script Preview",
|
||||
},
|
||||
"zh": {
|
||||
"label": "训练命令预览",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -8,7 +8,7 @@ from transformers.trainer import TRAINING_ARGS_NAME
|
|||
from typing import Generator, List, Tuple
|
||||
|
||||
from llmtuner.extras.callbacks import LogCallback
|
||||
from llmtuner.extras.constants import DEFAULT_MODULE
|
||||
from llmtuner.extras.constants import DEFAULT_MODULE, SFT_SCRIPT_PREFIX
|
||||
from llmtuner.extras.logging import LoggerHandler
|
||||
from llmtuner.extras.misc import torch_gc
|
||||
from llmtuner.tuner import run_exp
|
||||
|
@ -100,16 +100,44 @@ class Runner:
|
|||
if error:
|
||||
yield error, gr.update(visible=False)
|
||||
return
|
||||
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, output_dir)
|
||||
|
||||
args = self._build_args(batch_size, checkpoints, compute_type, dataset, dataset_dir, finetuning_type,
|
||||
gradient_accumulation_steps, learning_rate, logging_steps, lora_dropout, lora_rank,
|
||||
lora_target, lr_scheduler_type, max_grad_norm, max_samples, max_source_length,
|
||||
max_target_length, model_name, model_name_or_path, num_train_epochs, output_dir,
|
||||
padding_side, quantization_bit, resume_lora_training, save_steps, source_prefix,
|
||||
template, val_size, warmup_steps)
|
||||
|
||||
run_kwargs = dict(args=args, callbacks=[trainer_callback])
|
||||
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
|
||||
thread.start()
|
||||
|
||||
while thread.is_alive():
|
||||
time.sleep(2)
|
||||
if self.aborted:
|
||||
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
|
||||
else:
|
||||
yield logger_handler.log, update_process_bar(trainer_callback)
|
||||
|
||||
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
|
||||
finish_info = ALERTS["info_finished"][lang]
|
||||
else:
|
||||
finish_info = ALERTS["err_failed"][lang]
|
||||
|
||||
yield self.finalize(lang, finish_info), gr.update(visible=False)
|
||||
|
||||
def _build_args(self, batch_size, checkpoints, compute_type, dataset, dataset_dir, finetuning_type,
|
||||
gradient_accumulation_steps, learning_rate, logging_steps, lora_dropout, lora_rank, lora_target,
|
||||
lr_scheduler_type, max_grad_norm, max_samples, max_source_length, max_target_length, model_name,
|
||||
model_name_or_path, num_train_epochs, output_dir, padding_side, quantization_bit,
|
||||
resume_lora_training, save_steps, source_prefix, template, val_size, warmup_steps):
|
||||
if checkpoints:
|
||||
checkpoint_dir = ",".join(
|
||||
[os.path.join(get_save_dir(model_name), finetuning_type, checkpoint) for checkpoint in checkpoints]
|
||||
)
|
||||
else:
|
||||
checkpoint_dir = None
|
||||
|
||||
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, output_dir)
|
||||
|
||||
args = dict(
|
||||
stage="sft",
|
||||
model_name_or_path=model_name_or_path,
|
||||
|
@ -143,30 +171,12 @@ class Runner:
|
|||
resume_lora_training=resume_lora_training,
|
||||
output_dir=output_dir
|
||||
)
|
||||
|
||||
if val_size > 1e-6:
|
||||
args["val_size"] = val_size
|
||||
args["evaluation_strategy"] = "steps"
|
||||
args["eval_steps"] = save_steps
|
||||
args["load_best_model_at_end"] = True
|
||||
|
||||
run_kwargs = dict(args=args, callbacks=[trainer_callback])
|
||||
thread = threading.Thread(target=run_exp, kwargs=run_kwargs)
|
||||
thread.start()
|
||||
|
||||
while thread.is_alive():
|
||||
time.sleep(2)
|
||||
if self.aborted:
|
||||
yield ALERTS["info_aborting"][lang], gr.update(visible=False)
|
||||
else:
|
||||
yield logger_handler.log, update_process_bar(trainer_callback)
|
||||
|
||||
if os.path.exists(os.path.join(output_dir, TRAINING_ARGS_NAME)):
|
||||
finish_info = ALERTS["info_finished"][lang]
|
||||
else:
|
||||
finish_info = ALERTS["err_failed"][lang]
|
||||
|
||||
yield self.finalize(lang, finish_info), gr.update(visible=False)
|
||||
return args
|
||||
|
||||
def run_eval(
|
||||
self,
|
||||
|
@ -240,3 +250,52 @@ class Runner:
|
|||
finish_info = ALERTS["err_failed"][lang]
|
||||
|
||||
yield self.finalize(lang, finish_info), gr.update(visible=False)
|
||||
|
||||
def preview_sft_script(
|
||||
self,
|
||||
lang: str,
|
||||
model_name: str,
|
||||
checkpoints: List[str],
|
||||
finetuning_type: str,
|
||||
quantization_bit: str,
|
||||
template: str,
|
||||
source_prefix: str,
|
||||
dataset_dir: str,
|
||||
dataset: List[str],
|
||||
max_source_length: int,
|
||||
max_target_length: int,
|
||||
learning_rate: str,
|
||||
num_train_epochs: str,
|
||||
max_samples: str,
|
||||
batch_size: int,
|
||||
gradient_accumulation_steps: int,
|
||||
lr_scheduler_type: str,
|
||||
max_grad_norm: str,
|
||||
val_size: float,
|
||||
logging_steps: int,
|
||||
save_steps: int,
|
||||
warmup_steps: int,
|
||||
compute_type: str,
|
||||
padding_side: str,
|
||||
lora_rank: int,
|
||||
lora_dropout: float,
|
||||
lora_target: str,
|
||||
resume_lora_training: bool,
|
||||
output_dir: str
|
||||
):
|
||||
model_name_or_path, error, logger_handler, trainer_callback = self.initialize(lang, model_name, dataset)
|
||||
output_dir = os.path.join(get_save_dir(model_name), finetuning_type, output_dir)
|
||||
|
||||
args = self._build_args(batch_size, checkpoints, compute_type, dataset, dataset_dir, finetuning_type,
|
||||
gradient_accumulation_steps, learning_rate, logging_steps, lora_dropout, lora_rank,
|
||||
lora_target, lr_scheduler_type, max_grad_norm, max_samples, max_source_length,
|
||||
max_target_length, model_name, model_name_or_path, num_train_epochs, output_dir,
|
||||
padding_side, quantization_bit, resume_lora_training, save_steps, source_prefix,
|
||||
template, val_size, warmup_steps)
|
||||
script_lines = [SFT_SCRIPT_PREFIX]
|
||||
for param_key, param_value in args.items():
|
||||
# filter None
|
||||
if param_value:
|
||||
script_lines.append(" --" + param_key + " " + str(param_value) + " ")
|
||||
script_str = "\\\n".join(script_lines)
|
||||
return gr.update(value=script_str)
|
||||
|
|
Loading…
Reference in New Issue