add last_checkpoint support

This commit is contained in:
niuba 2023-08-09 16:39:27 +08:00
parent df946e6949
commit 2ec68d3398
1 changed files with 24 additions and 2 deletions

View File

@ -1,4 +1,5 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
import os
from typing import TYPE_CHECKING, Optional, List
from transformers import DataCollatorForSeq2Seq
@ -10,11 +11,14 @@ from llmtuner.extras.ploting import plot_loss
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.sft.metric import ComputeMetrics
from llmtuner.tuner.sft.trainer import Seq2SeqPeftTrainer
from transformers.trainer_utils import get_last_checkpoint
from llmtuner.extras.logging import reset_logging, get_logger
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
logger = get_logger(__name__)
def run_sft(
model_args: "ModelArguments",
@ -57,10 +61,28 @@ def run_sft(
"temperature": 0.95,
"logits_processor": get_logits_processor()
}
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Training
if training_args.do_train:
train_result = trainer.train()
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()