support quantization in export model

This commit is contained in:
hiyouga 2023-12-15 23:44:50 +08:00
parent 87ef3f47b5
commit 3524aa1e58
9 changed files with 120 additions and 32 deletions

View File

@ -479,7 +479,10 @@ python src/export_model.py \
```
> [!WARNING]
> Merging LoRA weights into a GPTQ quantized model is not supported.
> Merging LoRA weights into a quantized model is not supported.
> [!TIP]
> Use `--export_quantization_bit 4` and `--export_quantization_dataset data/wiki_demo.txt` to quantize the model.
### API Demo

View File

@ -479,7 +479,10 @@ python src/export_model.py \
```
> [!WARNING]
> 尚不支持 GPTQ 量化模型的 LoRA 权重合并及导出。
> 尚不支持量化模型的 LoRA 权重合并及导出。
> [!TIP]
> 使用 `--export_quantization_bit 4``--export_quantization_dataset data/wiki_demo.txt` 量化导出模型。
### API 服务

View File

@ -3,7 +3,8 @@ from typing import TYPE_CHECKING, Any, Dict, List, Union
from datasets import concatenate_datasets, interleave_datasets, load_dataset
from llmtuner.data.utils import checksum, EXT2TYPE
from llmtuner.data.utils import checksum
from llmtuner.extras.constants import FILEEXT2TYPE
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
@ -39,12 +40,12 @@ def get_dataset(
for file_name in os.listdir(local_path):
data_files.append(os.path.join(local_path, file_name))
if data_path is None:
data_path = EXT2TYPE.get(file_name.split(".")[-1], None)
data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None)
else:
assert data_path == EXT2TYPE.get(file_name.split(".")[-1], None), "file types are not identical."
assert data_path == FILEEXT2TYPE.get(file_name.split(".")[-1], None), "file types are not identical."
elif os.path.isfile(local_path): # is file
data_files.append(local_path)
data_path = EXT2TYPE.get(local_path.split(".")[-1], None)
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None)
else:
raise ValueError("File not found.")

View File

@ -12,16 +12,6 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
EXT2TYPE = {
"arrow": "arrow",
"csv": "csv",
"json": "json",
"jsonl": "json",
"parquet": "parquet",
"txt": "text"
}
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
if file_sha1 is None:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")

View File

@ -9,6 +9,15 @@ DEFAULT_MODULE = defaultdict(str)
DEFAULT_TEMPLATE = defaultdict(str)
FILEEXT2TYPE = {
"arrow": "arrow",
"csv": "csv",
"json": "json",
"jsonl": "json",
"parquet": "parquet",
"txt": "text"
}
IGNORE_INDEX = -100
LAYERNORM_NAMES = {"norm", "ln"}

View File

@ -125,7 +125,38 @@ class RLHFArguments:
@dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
class ExportArguments:
r"""
Arguments pertaining to model exporting.
"""
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."}
)
export_size: Optional[int] = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."}
)
export_quantization_bit: Optional[int] = field(
default=None,
metadata={"help": "The number of bits to quantize the exported model."}
)
export_quantization_dataset: Optional[str] = field(
default=None,
metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}
)
export_quantization_nsamples: Optional[int] = field(
default=128,
metadata={"help": "The number of samples used for quantization."}
)
export_quantization_maxlen: Optional[str] = field(
default=1024,
metadata={"help": "The maximum length of the model inputs used for quantization."}
)
@dataclass
class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, ExportArguments):
r"""
Arguments pertaining to which techniques we are going to fine-tuning with.
"""
@ -141,14 +172,6 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
default=False,
metadata={"help": "Whether to upcast the layernorm weights in fp32."}
)
export_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory to save the exported model."}
)
export_size: Optional[int] = field(
default=1,
metadata={"help": "The file shard size (in GB) of the exported model."}
)
plot_loss: Optional[bool] = field(
default=False,
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
@ -170,6 +193,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization."
if self.stage == "ppo" and self.reward_model is None:
raise ValueError("Reward model is necessary for PPO training.")
@ -177,6 +201,9 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
raise ValueError("Freeze/Full PPO training needs `reward_model_type=full`.")
if self.export_quantization_bit is not None and self.export_quantization_dataset is None:
raise ValueError("Quantization dataset is necessary for exporting.")
def save_to_json(self, json_path: str):
r"""Saves the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(asdict(self), indent=2, sort_keys=True) + "\n"

View File

@ -62,7 +62,7 @@ def load_model_and_tokenizer(
patcher.configure_rope(config, model_args, is_trainable)
patcher.configure_flashattn(config_kwargs, model_args)
patcher.configure_longlora(config, model_args, is_trainable)
patcher.configure_quantization(config, config_kwargs, model_args)
patcher.configure_quantization(config, config_kwargs, tokenizer, model_args, finetuning_args)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,

View File

@ -1,12 +1,16 @@
import os
import math
import torch
import random
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict
from typing import TYPE_CHECKING, Any, Dict, List
from datasets import load_dataset
from transformers import BitsAndBytesConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils.versions import require_version
from llmtuner.extras.constants import FILEEXT2TYPE
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import get_current_device, infer_optim_dtype
from llmtuner.extras.packages import is_flash_attn2_available
@ -14,7 +18,7 @@ from llmtuner.extras.packages import is_flash_attn2_available
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from trl import AutoModelForCausalLMWithValueHead
from llmtuner.hparams import ModelArguments
from llmtuner.hparams import ModelArguments, FinetuningArguments
logger = get_logger(__name__)
@ -36,7 +40,13 @@ def configure_longlora(config: "PretrainedConfig", model_args: "ModelArguments",
logger.warning("Current model does not support shift short attention.")
def configure_quantization(config: "PretrainedConfig", config_kwargs: Dict[str, Any], model_args: "ModelArguments"):
def configure_quantization(
config: "PretrainedConfig",
config_kwargs: Dict[str, Any],
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments"
):
if getattr(config, "quantization_config", None): # gptq or awq
model_args.quantization_bit = None # remove bnb quantization
config_kwargs["device_map"] = {"": get_current_device()}
@ -63,6 +73,16 @@ def configure_quantization(config: "PretrainedConfig", config_kwargs: Dict[str,
config_kwargs["device_map"] = {"": get_current_device()}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
if finetuning_args.export_quantization_bit is not None: # gptq
require_version("optimum>=1.16.0", "To fix: pip install optimum>=1.16.0")
require_version("auto_gptq>=0.5.0", "To fix: pip install auto_gptq>=0.5.0")
config_kwargs["quantization_config"] = GPTQConfig(
bits=finetuning_args.export_quantization_bit,
dataset=get_quantization_dataset(tokenizer, model_args, finetuning_args)
)
config_kwargs["device_map"] = "auto"
logger.info("Quantizing model to {} bit.".format(finetuning_args.export_quantization_bit))
def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool):
if model_args.rope_scaling is not None:
@ -91,6 +111,40 @@ def configure_rope(config: "PretrainedConfig", model_args: "ModelArguments", is_
))
def get_quantization_dataset(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
finetuning_args: "FinetuningArguments"
) -> List[str]:
r"""
Inspired by: https://github.com/huggingface/optimum/blob/v1.16.0/optimum/gptq/data.py#L133
TODO: remove tokenizer.decode() https://github.com/huggingface/optimum/pull/1600
"""
if os.path.isfile(finetuning_args.export_quantization_dataset):
data_path = FILEEXT2TYPE.get(finetuning_args.export_quantization_dataset.split(".")[-1], None)
data_files = finetuning_args.export_quantization_dataset
else:
data_path = finetuning_args.export_quantization_dataset
data_files = None
dataset = load_dataset(path=data_path, data_files=data_files, split="train", cache_dir=model_args.cache_dir)
maxlen = finetuning_args.export_quantization_maxlen
samples = []
for _ in range(finetuning_args.export_quantization_nsamples):
while True:
sample_idx = random.randint(0, len(dataset) - 1)
sample: Dict[str, torch.Tensor] = tokenizer(dataset[sample_idx]["text"], return_tensors="pt")
if sample["input_ids"].size(1) >= maxlen:
break # TODO: fix large maxlen
word_idx = random.randint(0, sample["input_ids"].size(1) - maxlen - 1)
input_ids = sample["input_ids"][:, word_idx:word_idx+maxlen]
samples.append(tokenizer.decode(input_ids[0].tolist(), skip_special_tokens=True))
return samples
def patch_config(config: "PretrainedConfig", model_args: "ModelArguments"):
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))

View File

@ -38,10 +38,11 @@ def export_model(args: Optional[Dict[str, Any]] = None):
model_args, _, finetuning_args, _ = get_infer_args(args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
if getattr(model, "quantization_method", None) in ["gptq", "awq"]:
raise ValueError("Cannot export a GPTQ or AWQ quantized model.")
if getattr(model, "quantization_method", None):
raise ValueError("Cannot export a quantized model.")
model.config.use_cache = True
model = model.to("cpu")
model.save_pretrained(finetuning_args.export_dir, max_shard_size="{}GB".format(finetuning_args.export_size))
try: