add API demo from #1
This commit is contained in:
parent
06e1b120e1
commit
3d8d5ee5d5
115
src/api.py
115
src/api.py
|
@ -1,115 +0,0 @@
|
|||
# coding=utf-8
|
||||
# Chat with LLaMA in API mode.
|
||||
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
# Call:
|
||||
# curl --location 'http://127.0.0.1:8000' \
|
||||
# --header 'Content-Type: application/json' \
|
||||
# --data '{"prompt": "Hello there!","history": []}'
|
||||
|
||||
# Response:
|
||||
# {
|
||||
# "response":"'I am a second year student at the University of British Columbia, in Vancouver.\\nMy major
|
||||
# is Computer Science and my minor (double degree) area was Mathematics/Statistics with an emphasis on Operations
|
||||
# Research & Management Sciences which means that when it comes to solving problems using computers or any kind data
|
||||
# analysis; whether its from businesses , governments etc., i can help you out :) .'",
|
||||
# "history":"[('Hello there!',
|
||||
# 'I am a second year student at the University of British Columbia, in Vancouver.\\nMy major is Computer Science and
|
||||
# my minor (double degree) area was Mathematics/Statistics with an emphasis on Operations Research & Management
|
||||
# Sciences which means that when it comes to solving problems using computers or any kind data analysis; whether its
|
||||
# from businesses , governments etc., i can help you out :) .')]",
|
||||
# "status":200,
|
||||
# "time":"2023-05-30 06:57:38" }
|
||||
|
||||
import datetime
|
||||
import torch
|
||||
from utils import ModelArguments, auto_configure_device_map, load_pretrained
|
||||
from transformers import HfArgumentParser
|
||||
import json
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, Request
|
||||
|
||||
DEVICE = "cuda"
|
||||
|
||||
|
||||
def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
num_gpus = torch.cuda.device_count()
|
||||
for device_id in range(num_gpus):
|
||||
with torch.cuda.device(device_id):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
|
||||
# Parse the request JSON
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
|
||||
# Tokenize the input prompt
|
||||
inputs = tokenizer([prompt], return_tensors="pt")
|
||||
inputs = inputs.to(model.device)
|
||||
|
||||
# Generation arguments
|
||||
gen_kwargs = {
|
||||
"do_sample": True,
|
||||
"top_p": 0.9,
|
||||
"top_k": 40,
|
||||
"temperature": 0.7,
|
||||
"num_beams": 1,
|
||||
"max_new_tokens": 256,
|
||||
"repetition_penalty": 1.5
|
||||
}
|
||||
|
||||
# Generate response
|
||||
with torch.no_grad():
|
||||
generation_output = model.generate(**inputs, **gen_kwargs)
|
||||
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
# Update history
|
||||
history = history + [(prompt, response)]
|
||||
|
||||
# Prepare response
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": repr(response),
|
||||
"history": repr(history),
|
||||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
|
||||
# Log and clean up
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
torch_gc()
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = HfArgumentParser(ModelArguments)
|
||||
model_args, = parser.parse_args_into_dataclasses()
|
||||
model, tokenizer = load_pretrained(model_args)
|
||||
|
||||
if torch.cuda.device_count() > 1:
|
||||
from accelerate import dispatch_model
|
||||
|
||||
device_map = auto_configure_device_map(torch.cuda.device_count())
|
||||
model = dispatch_model(model, device_map)
|
||||
else:
|
||||
model = model.cuda()
|
||||
|
||||
model.eval()
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
|
@ -0,0 +1,118 @@
|
|||
# coding=utf-8
|
||||
# Implements API for fine-tuned models.
|
||||
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
# Request:
|
||||
# curl http://127.0.0.1:8000 --header 'Content-Type: application/json' --data '{"prompt": "Hello there!", "history": []}'
|
||||
|
||||
# Response:
|
||||
# {
|
||||
# "response": "'Hi there!'",
|
||||
# "history": "[('Hello there!', 'Hi there!')]",
|
||||
# "status": 200,
|
||||
# "time": "2000-00-00 00:00:00"
|
||||
# }
|
||||
|
||||
|
||||
import json
|
||||
import torch
|
||||
import uvicorn
|
||||
import datetime
|
||||
from fastapi import FastAPI, Request
|
||||
|
||||
from utils import (
|
||||
load_pretrained,
|
||||
prepare_infer_args,
|
||||
get_logits_processor
|
||||
)
|
||||
|
||||
|
||||
def torch_gc():
|
||||
if not torch.cuda.is_available():
|
||||
num_gpus = torch.cuda.device_count()
|
||||
for device_id in range(num_gpus):
|
||||
with torch.cuda.device(device_id):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer, format_example
|
||||
|
||||
# Parse the request JSON
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get("prompt")
|
||||
history = json_post_list.get("history")
|
||||
|
||||
# Tokenize the input prompt
|
||||
input_ids = tokenizer([format_example(prompt, history)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
# Generation arguments
|
||||
gen_kwargs = {
|
||||
"input_ids": input_ids,
|
||||
"do_sample": True,
|
||||
"top_p": 0.7,
|
||||
"temperature": 0.95,
|
||||
"num_beams": 1,
|
||||
"max_new_tokens": 512,
|
||||
"repetition_penalty": 1.0,
|
||||
"logits_processor": get_logits_processor()
|
||||
}
|
||||
|
||||
# Generate response
|
||||
with torch.no_grad():
|
||||
generation_output = model.generate(**gen_kwargs)
|
||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
# Update history
|
||||
history = history + [(prompt, response)]
|
||||
|
||||
# Prepare response
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": repr(response),
|
||||
"history": repr(history),
|
||||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
|
||||
# Log and clean up
|
||||
log = "[" + time + "] " + "\", prompt:\"" + prompt + "\", response:\"" + repr(response) + "\""
|
||||
print(log)
|
||||
torch_gc()
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_args, data_args, finetuning_args = prepare_infer_args()
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||||
|
||||
def format_example_alpaca(query, history):
|
||||
prompt = "Below is an instruction that describes a task. "
|
||||
prompt += "Write a response that appropriately completes the request.\n"
|
||||
prompt += "Instruction:\n"
|
||||
for old_query, response in history:
|
||||
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
|
||||
prompt += "Human: {}\nAssistant:".format(query)
|
||||
return prompt
|
||||
|
||||
def format_example_ziya(query, history):
|
||||
prompt = ""
|
||||
for old_query, response in history:
|
||||
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
|
||||
prompt += "<human>: {}\n<bot>:".format(query)
|
||||
return prompt
|
||||
|
||||
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
|
@ -1,6 +1,6 @@
|
|||
# coding=utf-8
|
||||
# Implements stream chat in command line for fine-tuned models.
|
||||
# Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint
|
||||
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
|
||||
from utils import (
|
||||
|
|
|
@ -142,7 +142,7 @@ def load_valuehead_params(model: torch.nn.Module, checkpoint_dir: os.PathLike) -
|
|||
|
||||
|
||||
def smooth(scalars: List[float], weight: Optional[float] = 0.9) -> List[float]:
|
||||
"""
|
||||
r"""
|
||||
EMA implementation according to TensorBoard.
|
||||
"""
|
||||
last = scalars[0]
|
||||
|
|
132
src/web_demo.py
132
src/web_demo.py
|
@ -1,6 +1,6 @@
|
|||
# coding=utf-8
|
||||
# Implements user interface in browser for fine-tuned models.
|
||||
# Usage: python web_demo.py --checkpoint_dir path_to_checkpoint
|
||||
# Usage: python web_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
|
||||
import mdtex2html
|
||||
|
@ -13,58 +13,12 @@ from transformers.utils.versions import require_version
|
|||
|
||||
|
||||
require_version("gradio>=3.30.0", "To fix: pip install gradio>=3.30.0")
|
||||
|
||||
|
||||
model_args, data_args, finetuning_args = prepare_infer_args()
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||||
|
||||
|
||||
"""Override Chatbot.postprocess"""
|
||||
|
||||
def postprocess(self, y):
|
||||
if y is None:
|
||||
return []
|
||||
for i, (message, response) in enumerate(y):
|
||||
y[i] = (
|
||||
None if message is None else mdtex2html.convert((message)),
|
||||
None if response is None else mdtex2html.convert(response),
|
||||
)
|
||||
return y
|
||||
|
||||
|
||||
gr.Chatbot.postprocess = postprocess
|
||||
|
||||
|
||||
def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
||||
lines = text.split("\n")
|
||||
lines = [line for line in lines if line != ""]
|
||||
count = 0
|
||||
for i, line in enumerate(lines):
|
||||
if "```" in line:
|
||||
count += 1
|
||||
items = line.split('`')
|
||||
if count % 2 == 1:
|
||||
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
||||
else:
|
||||
lines[i] = f'<br></code></pre>'
|
||||
else:
|
||||
if i > 0:
|
||||
if count % 2 == 1:
|
||||
line = line.replace("`", "\`")
|
||||
line = line.replace("<", "<")
|
||||
line = line.replace(">", ">")
|
||||
line = line.replace(" ", " ")
|
||||
line = line.replace("*", "*")
|
||||
line = line.replace("_", "_")
|
||||
line = line.replace("-", "-")
|
||||
line = line.replace(".", ".")
|
||||
line = line.replace("!", "!")
|
||||
line = line.replace("(", "(")
|
||||
line = line.replace(")", ")")
|
||||
line = line.replace("$", "$")
|
||||
lines[i] = "<br>"+line
|
||||
text = "".join(lines)
|
||||
return text
|
||||
|
||||
|
||||
def format_example_alpaca(query, history):
|
||||
prompt = "Below is an instruction that describes a task. "
|
||||
prompt += "Write a response that appropriately completes the request.\n"
|
||||
|
@ -87,10 +41,59 @@ format_example = format_example_alpaca if data_args.prompt_template == "alpaca"
|
|||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
|
||||
def predict(input, chatbot, max_length, top_p, temperature, history):
|
||||
chatbot.append((parse_text(input), ""))
|
||||
def postprocess(self, y):
|
||||
r"""
|
||||
Overrides Chatbot.postprocess
|
||||
"""
|
||||
if y is None:
|
||||
return []
|
||||
for i, (message, response) in enumerate(y):
|
||||
y[i] = (
|
||||
None if message is None else mdtex2html.convert((message)),
|
||||
None if response is None else mdtex2html.convert(response),
|
||||
)
|
||||
return y
|
||||
|
||||
input_ids = tokenizer([format_example(input, history)], return_tensors="pt")["input_ids"]
|
||||
|
||||
gr.Chatbot.postprocess = postprocess
|
||||
|
||||
|
||||
def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
||||
lines = text.split("\n")
|
||||
lines = [line for line in lines if line != ""]
|
||||
count = 0
|
||||
for i, line in enumerate(lines):
|
||||
if "```" in line:
|
||||
count += 1
|
||||
items = line.split("`")
|
||||
if count % 2 == 1:
|
||||
lines[i] = "<pre><code class=\"language-{}\">".format(items[-1])
|
||||
else:
|
||||
lines[i] = "<br /></code></pre>"
|
||||
else:
|
||||
if i > 0:
|
||||
if count % 2 == 1:
|
||||
line = line.replace("`", "\`")
|
||||
line = line.replace("<", "<")
|
||||
line = line.replace(">", ">")
|
||||
line = line.replace(" ", " ")
|
||||
line = line.replace("*", "*")
|
||||
line = line.replace("_", "_")
|
||||
line = line.replace("-", "-")
|
||||
line = line.replace(".", ".")
|
||||
line = line.replace("!", "!")
|
||||
line = line.replace("(", "(")
|
||||
line = line.replace(")", ")")
|
||||
line = line.replace("$", "$")
|
||||
lines[i] = "<br />" + line
|
||||
text = "".join(lines)
|
||||
return text
|
||||
|
||||
|
||||
def predict(query, chatbot, max_length, top_p, temperature, history):
|
||||
chatbot.append((parse_text(query), ""))
|
||||
|
||||
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
gen_kwargs = {
|
||||
"input_ids": input_ids,
|
||||
|
@ -108,13 +111,13 @@ def predict(input, chatbot, max_length, top_p, temperature, history):
|
|||
response = ""
|
||||
for new_text in streamer:
|
||||
response += new_text
|
||||
new_history = history + [(input, response)]
|
||||
chatbot[-1] = (parse_text(input), parse_text(response))
|
||||
new_history = history + [(query, response)]
|
||||
chatbot[-1] = (parse_text(query), parse_text(response))
|
||||
yield chatbot, new_history
|
||||
|
||||
|
||||
def reset_user_input():
|
||||
return gr.update(value='')
|
||||
return gr.update(value="")
|
||||
|
||||
|
||||
def reset_state():
|
||||
|
@ -122,26 +125,33 @@ def reset_state():
|
|||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.HTML("""<h1 align="center">LLaMA-Efficient-Tuning</h1>""")
|
||||
|
||||
gr.HTML("""
|
||||
<h1 align="center">
|
||||
<a href="https://github.com/hiyouga/LLaMA-Efficient-Tuning" target="_blank">
|
||||
LLaMA Efficient Tuning
|
||||
</a>
|
||||
</h1>
|
||||
""")
|
||||
|
||||
chatbot = gr.Chatbot()
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=4):
|
||||
with gr.Column(scale=12):
|
||||
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
||||
container=False)
|
||||
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
|
||||
with gr.Column(min_width=32, scale=1):
|
||||
submitBtn = gr.Button("Submit", variant="primary")
|
||||
|
||||
with gr.Column(scale=1):
|
||||
emptyBtn = gr.Button("Clear History")
|
||||
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
|
||||
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
||||
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||
temperature = gr.Slider(0, 1.5, value=0.95, step=0.01, label="Temperature", interactive=True)
|
||||
|
||||
history = gr.State([])
|
||||
|
||||
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
||||
show_progress=True)
|
||||
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True)
|
||||
submitBtn.click(reset_user_input, [], [user_input])
|
||||
|
||||
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
||||
|
|
Loading…
Reference in New Issue