This commit is contained in:
BUAADreamer 2024-05-15 09:54:21 +08:00
commit 3f4556454c
21 changed files with 226 additions and 60 deletions

View File

@ -70,14 +70,16 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
[24/05/13] We supported fine-tuning the **Yi-1.5** series models.
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
<details><summary>Full Changelog</summary>
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
@ -328,7 +330,7 @@ Extra dependencies available: torch, metrics, deepspeed, bitsandbytes, vllm, gal
<details><summary>For Windows users</summary>
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you will be required to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
If you want to enable the quantized LoRA (QLoRA) on the Windows platform, you need to install a pre-built version of `bitsandbytes` library, which supports CUDA 11.1 to 12.2, please select the appropriate [release version](https://github.com/jllllll/bitsandbytes-windows-webui/releases/tag/wheels) based on your CUDA version.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.2.post2-py3-none-win_amd64.whl
@ -338,6 +340,23 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
</details>
<details><summary>For Ascend NPU users</summary>
To utilize Ascend NPU devices for (distributed) training and inference, you need to install the **[torch-npu](https://gitee.com/ascend/pytorch)** package and the **[Ascend CANN Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**.
| Requirement | Minimum | Recommend |
| ------------ | ------- | --------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.2.0 | 2.2.0 |
| torch-npu | 2.2.0 | 2.2.0 |
| deepspeed | 0.13.2 | 0.13.2 |
Remember to use `ASCEND_RT_VISIBLE_DEVICES` instead of `CUDA_VISIBLE_DEVICES` to specify the device to use.
If you cannot infer model on NPU devices, try setting `do_sample: false` in the configurations.
</details>
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.

View File

@ -70,14 +70,16 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 更新日志
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
[24/05/13] 我们支持了 Yi-1.5 系列模型的微调。
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
<details><summary>展开日志</summary>
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
@ -338,6 +340,23 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
</details>
<details><summary>昇腾 NPU 用户指南</summary>
如果使用昇腾 NPU 设备进行(分布式)训练或推理,需要安装 **[torch-npu](https://gitee.com/ascend/pytorch)** 库和 **[Ascend CANN Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**。
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.2.0 | 2.2.0 |
| torch-npu | 2.2.0 | 2.2.0 |
| deepspeed | 0.13.2 | 0.13.2 |
请记得使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定您使用的设备。
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`
</details>
### 数据准备
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 186 KiB

After

Width:  |  Height:  |  Size: 145 KiB

View File

@ -7,6 +7,7 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
@ -124,6 +125,14 @@ bash examples/lora_multi_gpu/multi_node.sh
bash examples/lora_multi_gpu/ds_zero3.sh
```
### LoRA Fine-Tuning on Multiple NPUs
#### Supervised Fine-Tuning with DeepSpeed ZeRO-0
```bash
bash examples/lora_multi_npu/ds_zero0.sh
```
### Full-Parameter Fine-Tuning on Multiple GPUs
#### Supervised Fine-Tuning with Accelerate on Single Node

View File

@ -7,6 +7,7 @@
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
- [多 NPU LoRA 微调](#多-npu-lora-微调)
- [多 GPU 全参数微调](#多-gpu-全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
@ -124,6 +125,14 @@ bash examples/lora_multi_gpu/multi_node.sh
bash examples/lora_multi_gpu/ds_zero3.sh
```
### 多 NPU LoRA 微调
#### 使用 DeepSpeed ZeRO-0 训练
```bash
bash examples/lora_multi_npu/ds_zero0.sh
```
### 多 GPU 全参数微调
#### 使用 DeepSpeed 进行单节点训练

View File

@ -0,0 +1,28 @@
{
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": 0,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true,
"round_robin_gradients": true
}
}

View File

@ -6,7 +6,7 @@ RANK=0
MASTER_ADDR=192.168.0.1
MASTER_PORT=29500
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run \
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \

View File

@ -1,9 +1,15 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run \
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes 1 \
--standalone \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/full_multi_gpu/llama3_full_sft.yaml

View File

@ -1,9 +1,15 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.run \
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes 1 \
--standalone \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/lora_multi_gpu/llama3_lora_sft_ds.yaml

View File

@ -0,0 +1,15 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/lora_multi_npu/llama3_lora_sft_ds.yaml

View File

@ -0,0 +1,42 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# ddp
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z0_config.json
# dataset
dataset: identity,alpaca_gpt4_en
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 0.0001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -51,7 +51,7 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
allow_methods=["*"],
allow_headers=["*"],
)
api_key = os.environ.get("API_KEY", None)
api_key = os.environ.get("API_KEY")
security = HTTPBearer(auto_error=False)
async def verify_api_key(auth: Annotated[Optional[HTTPAuthorizationCredentials], Depends(security)]):

View File

@ -65,12 +65,13 @@ class HuggingfaceEngine(BaseEngine):
prompt_length = len(prompt_ids)
inputs = torch.tensor([prompt_ids], device=model.device)
do_sample = input_kwargs.pop("do_sample", None)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
do_sample = input_kwargs.pop("do_sample", generating_args["do_sample"])
temperature = input_kwargs.pop("temperature", generating_args["temperature"])
top_p = input_kwargs.pop("top_p", generating_args["top_p"])
top_k = input_kwargs.pop("top_k", generating_args["top_k"])
num_return_sequences = input_kwargs.pop("num_return_sequences", 1)
repetition_penalty = input_kwargs.pop("repetition_penalty", generating_args["repetition_penalty"])
length_penalty = input_kwargs.pop("length_penalty", generating_args["length_penalty"])
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
stop = input_kwargs.pop("stop", None)
@ -78,14 +79,16 @@ class HuggingfaceEngine(BaseEngine):
if stop is not None:
raise ValueError("Stop parameter is not supported in Huggingface engine yet.")
generating_args = generating_args.copy()
generating_args.update(
dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_return_sequences=num_return_sequences,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
eos_token_id=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
pad_token_id=tokenizer.pad_token_id,
)
@ -94,6 +97,10 @@ class HuggingfaceEngine(BaseEngine):
if isinstance(num_return_sequences, int) and num_return_sequences > 1:
generating_args["do_sample"] = True
if not generating_args["do_sample"]:
generating_args.pop("temperature", None)
generating_args.pop("top_p", None)
if max_length:
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length

View File

@ -89,43 +89,35 @@ class VllmEngine(BaseEngine):
)
prompt_length = len(prompt_ids)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
use_beam_search = self.generating_args["num_beams"] > 1
temperature = input_kwargs.pop("temperature", self.generating_args["temperature"])
top_p = input_kwargs.pop("top_p", self.generating_args["top_p"])
top_k = input_kwargs.pop("top_k", self.generating_args["top_k"])
num_return_sequences = input_kwargs.pop("num_return_sequences", 1)
repetition_penalty = input_kwargs.pop("repetition_penalty", self.generating_args["repetition_penalty"])
length_penalty = input_kwargs.pop("length_penalty", self.generating_args["length_penalty"])
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
stop = input_kwargs.pop("stop", None)
generating_args = self.generating_args.copy()
generating_args.update(
dict(
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
)
)
max_tokens = self.generating_args["max_new_tokens"] or self.generating_args["max_length"]
if max_length:
generating_args["max_new_tokens"] = max_length - prompt_length
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
if max_new_tokens:
generating_args["max_new_tokens"] = max_new_tokens
max_tokens = max_new_tokens
sampling_params = SamplingParams(
n=generating_args["num_return_sequences"],
repetition_penalty=generating_args["repetition_penalty"],
temperature=generating_args["temperature"],
top_p=generating_args["top_p"],
top_k=generating_args["top_k"],
use_beam_search=generating_args["num_beams"] > 1,
length_penalty=generating_args["length_penalty"],
n=num_return_sequences,
repetition_penalty=repetition_penalty,
temperature=temperature,
top_p=top_p,
top_k=top_k,
use_beam_search=use_beam_search,
length_penalty=length_penalty,
stop=stop,
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
max_tokens=generating_args["max_new_tokens"],
max_tokens=max_tokens,
skip_special_tokens=True,
)

View File

@ -53,7 +53,7 @@ class LogCallback(TrainerCallback):
self.aborted = False
self.do_train = False
""" Web UI """
self.webui_mode = bool(int(os.environ.get("LLAMABOARD_ENABLED", "0")))
self.webui_mode = os.environ.get("LLAMABOARD_ENABLED", "0").lower() in ["true", "1"]
if self.webui_mode:
signal.signal(signal.SIGABRT, self._set_abort)
self.logger_handler = LoggerHandler(output_dir)

View File

@ -58,7 +58,7 @@ class AverageMeter:
def check_dependencies() -> None:
if int(os.environ.get("DISABLE_VERSION_CHECK", "0")):
if os.environ.get("DISABLE_VERSION_CHECK", "0").lower() in ["true", "1"]:
logger.warning("Version checking has been disabled, may lead to unexpected behaviors.")
else:
require_version("transformers>=4.37.2", "To fix: pip install transformers>=4.37.2")

View File

@ -21,6 +21,9 @@ def smooth(scalars: List[float]) -> List[float]:
r"""
EMA implementation according to TensorBoard.
"""
if len(scalars) == 0:
return []
last = scalars[0]
smoothed = []
weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function
@ -32,6 +35,9 @@ def smooth(scalars: List[float]) -> List[float]:
def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figure":
r"""
Plots loss curves in LlamaBoard.
"""
plt.close("all")
plt.switch_backend("agg")
fig = plt.figure()
@ -51,6 +57,9 @@ def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figur
def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
r"""
Plots loss curves and saves the image.
"""
plt.switch_backend("agg")
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
data = json.load(f)

View File

@ -1,9 +1,10 @@
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict
import torch
from peft import PeftModel
from transformers import PreTrainedModel, PreTrainedTokenizerBase
from transformers import PreTrainedModel, PreTrainedTokenizerBase, is_torch_npu_available
from transformers.integrations import is_deepspeed_zero3_enabled
from ..extras.logging import get_logger
@ -44,6 +45,10 @@ def patch_config(
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
if is_torch_npu_available():
use_jit_compile = os.environ.get("JIT_COMPILE", "0").lower() in ["true", "1"]
torch.npu.set_compile_mode(jit_compile=use_jit_compile)
configure_attn_implementation(config, model_args)
configure_rope(config, model_args, is_trainable)
configure_longlora(config, model_args, is_trainable)
@ -57,7 +62,7 @@ def patch_config(
logger.info("Using KV cache for faster generation.")
if getattr(config, "model_type", None) == "qwen":
setattr(config, "use_flash_attn", model_args.flash_attn)
setattr(config, "use_flash_attn", model_args.flash_attn == "fa2")
for dtype_name, dtype in [("fp16", torch.float16), ("bf16", torch.bfloat16), ("fp32", torch.float32)]:
setattr(config, dtype_name, model_args.compute_dtype == dtype)

View File

@ -22,7 +22,7 @@ def configure_attn_implementation(config: "PretrainedConfig", model_args: "Model
elif model_args.flash_attn == "sdpa":
if not is_sdpa_available():
logger.warning("Torch>=2.1.1 is required for SDPA attention.")
logger.warning("torch>=2.1.1 is required for SDPA attention.")
return
requested_attn_implementation = "sdpa"
@ -52,4 +52,4 @@ def print_attn_implementation(config: "PretrainedConfig") -> None:
elif attn_implementation == "sdpa":
logger.info("Using torch SDPA for faster training and inference.")
else:
logger.info("Using vanilla Attention implementation.")
logger.info("Using vanilla attention implementation.")

View File

@ -71,12 +71,12 @@ def create_web_demo() -> gr.Blocks:
def run_web_ui() -> None:
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
gradio_share = os.environ.get("GRADIO_SHARE", "0").lower() in ["true", "1"]
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
create_ui().queue().launch(share=gradio_share, server_name=server_name)
def run_web_demo() -> None:
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
gradio_share = os.environ.get("GRADIO_SHARE", "0").lower() in ["true", "1"]
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
create_web_demo().queue().launch(share=gradio_share, server_name=server_name)

View File

@ -4,7 +4,7 @@ from llmtuner.webui.interface import create_ui
def main():
gradio_share = bool(int(os.environ.get("GRADIO_SHARE", "0")))
gradio_share = os.environ.get("GRADIO_SHARE", "0").lower() in ["true", "1"]
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
create_ui().queue().launch(share=gradio_share, server_name=server_name)