add tests.cal_flops.py

This commit is contained in:
hiyouga 2023-09-16 23:40:41 +08:00
parent acda45e463
commit 469f859161
2 changed files with 46 additions and 4 deletions

View File

@ -86,10 +86,8 @@ def load_model_and_tokenizer(
# Fix config (for Qwen)
if is_trainable and hasattr(config, "fp16") and hasattr(config, "bf16"):
if model_args.compute_dtype == torch.bfloat16:
setattr(config, "bf16", True)
else:
setattr(config, "fp16", True)
setattr(config, "fp16", model_args.compute_dtype == torch.float16)
setattr(config, "bf16", model_args.compute_dtype == torch.bfloat16)
# Set RoPE scaling
if model_args.rope_scaling is not None:

44
tests/cal_flops.py Normal file
View File

@ -0,0 +1,44 @@
# coding=utf-8
# Calculates the flops of pre-trained models.
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
import fire
import torch
from typing import Optional
from deepspeed.accelerator import get_accelerator
from deepspeed.profiling.flops_profiler import get_model_profile
from llmtuner import ChatModel
def calculate(
model_name_or_path: str,
batch_size: Optional[int] = 1,
seq_length: Optional[int] = 256,
flash_attn: Optional[bool] = False
):
with get_accelerator().device(0):
chat_model = ChatModel(dict(
model_name_or_path=model_name_or_path,
template="vanilla",
flash_attn=flash_attn
))
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
input_dict = {
"input_ids": fake_input,
"labels": fake_input.clone()
}
flops, macs, params = get_model_profile(
chat_model.model,
kwargs=input_dict,
print_profile=True,
detailed=True
)
print("FLOPS:", flops)
print("MACs:", macs)
print("Params:", params)
if __name__ == "__main__":
fire.Fire(calculate)