From 636bb9c1e65e72c3a27049dacb3200234d1c2782 Mon Sep 17 00:00:00 2001 From: hiyouga <467089858@qq.com> Date: Thu, 4 Jul 2024 04:00:12 +0800 Subject: [PATCH] update tests --- tests/model/model_utils/test_packing.py | 75 +++++++++++++++---------- 1 file changed, 45 insertions(+), 30 deletions(-) diff --git a/tests/model/model_utils/test_packing.py b/tests/model/model_utils/test_packing.py index 8056099f..bee21691 100644 --- a/tests/model/model_utils/test_packing.py +++ b/tests/model/model_utils/test_packing.py @@ -12,42 +12,57 @@ # See the License for the specific language governing permissions and # limitations under the License. +import pytest import torch from llamafactory.model.model_utils.packing import get_seqlens_in_batch, get_unpad_data -def test_get_seqlens_in_batch(): - attention_mask_with_indices = torch.tensor( - [ - [1, 1, 2, 2, 2, 0], - [1, 2, 2, 3, 3, 3], - ] - ) +@pytest.mark.parametrize( + "attention_mask,golden_seq_lens", + [ + ( + [ + [1, 1, 2, 2, 2, 0], + [1, 2, 2, 3, 3, 3], + ], + [2, 3, 1, 2, 3], + ), + ( + [[1]], + [1], + ), + ], +) +def test_get_seqlens_in_batch(attention_mask, golden_seq_lens): + attention_mask_with_indices = torch.tensor(attention_mask) seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices) - assert list(seqlens_in_batch.size()) == [5] - assert torch.all(seqlens_in_batch == torch.tensor([2, 3, 1, 2, 3])) - - attention_mask_with_indices = torch.tensor([[1, 1, 1]]) - seqlens_in_batch = get_seqlens_in_batch(attention_mask_with_indices) - assert list(seqlens_in_batch.size()) == [1] - assert torch.all(seqlens_in_batch == torch.tensor([3])) + assert torch.all(seqlens_in_batch == torch.tensor(golden_seq_lens)) -def test_get_unpad_data(): - attention_mask_with_indices = torch.tensor( - [ - [1, 1, 2, 2, 2, 0], - [1, 2, 2, 3, 3, 3], - ] - ) +@pytest.mark.parametrize( + "attention_mask,golden_indices,golden_cu_seqlens,golden_max_seqlen", + [ + ( + [ + [1, 1, 2, 2, 2, 0], + [1, 2, 2, 3, 3, 3], + ], + [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11], + [0, 2, 5, 6, 8, 11], + 3, + ), + ( + [[1]], + [0], + [0, 1], + 1, + ), + ], +) +def test_get_unpad_data(attention_mask, golden_indices, golden_cu_seqlens, golden_max_seqlen): + attention_mask_with_indices = torch.tensor(attention_mask) indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices) - assert torch.all(indices == torch.tensor([0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11])) - assert torch.all(cu_seqlens == torch.tensor([0, 2, 5, 6, 8, 11], dtype=torch.int32)) - assert max_seqlen_in_batch == 3 - - attention_mask_with_indices = torch.tensor([[1, 1, 1]]) - indices, cu_seqlens, max_seqlen_in_batch = get_unpad_data(attention_mask_with_indices) - assert torch.all(indices == torch.tensor([0, 1, 2])) - assert torch.all(cu_seqlens == torch.tensor([0, 3], dtype=torch.int32)) - assert max_seqlen_in_batch == 3 + assert torch.all(indices == torch.tensor(golden_indices)) + assert torch.all(cu_seqlens == torch.tensor(golden_cu_seqlens, dtype=torch.int32)) + assert max_seqlen_in_batch == golden_max_seqlen