support liger kernel

This commit is contained in:
hiyouga 2024-08-27 11:20:14 +08:00
parent 36039b0fe0
commit 72bc8f0111
8 changed files with 69 additions and 7 deletions

View File

@ -51,7 +51,7 @@ Choose your path:
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: GaLore, BAdam, Adam-mini, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
- **Practical tricks**: FlashAttention-2, Unsloth, Liger Kernel, RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
@ -72,14 +72,16 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/08/27] We support **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**. Try `use_liger_kernel: true` for efficient training.
[24/08/09] We support **[Adam-mini](https://arxiv.org/abs/2406.16793)** optimizer. See [examples](examples/README.md) for usage. Thank [@relic-yuexi](https://github.com/relic-yuexi)'s PR.
[24/07/04] We support [contamination-free packed training](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing). Use `neat_packing: true` to activate it. Thank [@chuan298](https://github.com/chuan298)'s PR.
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
<details><summary>Full Changelog</summary>
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.

View File

@ -52,7 +52,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**GaLore、BAdam、Adam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **实用技巧**FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- **实用技巧**FlashAttention-2、Unsloth、Liger Kernel、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
@ -73,14 +73,16 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 更新日志
[24/08/27] 我们支持了 **[Liger Kernel](https://github.com/linkedin/Liger-Kernel)**。请使用 `use_liger_kernel: true` 来加速训练。
[24/08/09] 我们支持了 **[Adam-mini](https://arxiv.org/abs/2406.16793)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 [@relic-yuexi](https://github.com/relic-yuexi) 的 PR。
[24/07/04] 我们支持了[无污染打包训练](https://github.com/MeetKai/functionary/tree/main/functionary/train/packing)。请使用 `neat_packing: true` 参数。感谢 [@chuan298](https://github.com/chuan298) 的 PR。
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
<details><summary>展开日志</summary>
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。

View File

@ -117,6 +117,10 @@ class ModelArguments:
default=False,
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."},
)
use_liger_kernel: bool = field(
default=False,
metadata={"help": "Whether or not to enable liger kernel for faster training."},
)
visual_inputs: bool = field(
default=False,
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."},

View File

@ -116,6 +116,9 @@ def _check_extra_dependencies(
if model_args.use_unsloth:
require_version("unsloth", "Please install unsloth: https://github.com/unslothai/unsloth")
if model_args.use_liger_kernel:
require_version("liger-kernel", "To fix: pip install liger-kernel")
if model_args.mixture_of_depths is not None:
require_version("mixture-of-depth>=1.1.6", "To fix: pip install mixture-of-depth>=1.1.6")

View File

@ -0,0 +1,48 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PretrainedConfig
from ...hparams import ModelArguments
logger = get_logger(__name__)
def configure_liger_kernel(config: "PretrainedConfig", model_args: "ModelArguments", is_trainable: bool) -> None:
if not is_trainable or not model_args.use_liger_kernel:
return
if getattr(config, "model_type", None) == "gemma":
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel
elif getattr(config, "model_type", None) == "llama":
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel
elif getattr(config, "model_type", None) == "mistral":
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel
elif getattr(config, "model_type", None) == "mixtral":
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel
elif getattr(config, "model_type", None) == "qwen2":
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel
else:
logger.warning("Current model does not support liger kernel.")
return
apply_liger_kernel()
logger.info("Liger kernel has been applied to the model.")

View File

@ -27,6 +27,7 @@ from ..extras.misc import infer_optim_dtype
from .model_utils.attention import configure_attn_implementation, print_attn_implementation
from .model_utils.checkpointing import prepare_model_for_training
from .model_utils.embedding import resize_embedding_layer
from .model_utils.liger_kernel import configure_liger_kernel
from .model_utils.longlora import configure_longlora
from .model_utils.moe import add_z3_leaf_module, configure_moe
from .model_utils.packing import configure_packing
@ -70,6 +71,7 @@ def patch_config(
configure_attn_implementation(config, model_args, is_trainable)
configure_rope(config, model_args, is_trainable)
configure_liger_kernel(config, model_args, is_trainable)
configure_longlora(config, model_args, is_trainable)
configure_quantization(config, tokenizer, model_args, init_kwargs)
configure_moe(config, model_args, is_trainable)

View File

@ -47,7 +47,7 @@ def create_top() -> Dict[str, "Component"]:
quantization_method = gr.Dropdown(choices=["bitsandbytes", "hqq", "eetq"], value="bitsandbytes", scale=1)
template = gr.Dropdown(choices=list(TEMPLATES.keys()), value="default", scale=1)
rope_scaling = gr.Radio(choices=["none", "linear", "dynamic"], value="none", scale=2)
booster = gr.Radio(choices=["auto", "flashattn2", "unsloth"], value="auto", scale=2)
booster = gr.Radio(choices=["auto", "flashattn2", "unsloth", "liger_kernel"], value="auto", scale=3)
visual_inputs = gr.Checkbox(scale=1)
model_name.change(get_model_info, [model_name], [model_path, template, visual_inputs], queue=False).then(

View File

@ -115,6 +115,7 @@ class Runner:
rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None,
flash_attn="fa2" if get("top.booster") == "flashattn2" else "auto",
use_unsloth=(get("top.booster") == "unsloth"),
use_liger_kernel=(get("top.booster") == "liger_kernel"),
visual_inputs=get("top.visual_inputs"),
dataset_dir=get("train.dataset_dir"),
dataset=",".join(get("train.dataset")),