This commit is contained in:
hiyouga 2024-06-03 23:30:37 +08:00
parent f9a206509e
commit 79784ebeb6
5 changed files with 26 additions and 13 deletions

View File

@ -57,7 +57,6 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
with gr.Row():
output_box = gr.Markdown()
output_elems = [output_box, progress_bar]
elem_dict.update(
dict(
cmd_preview_btn=cmd_preview_btn,
@ -68,6 +67,7 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
output_box=output_box,
)
)
output_elems = [output_box, progress_bar]
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems, concurrency_limit=None)
start_btn.click(engine.runner.run_eval, input_elems, output_elems)

View File

@ -298,22 +298,25 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
)
output_elems = [output_box, progress_bar, loss_viewer]
lang = engine.manager.get_elem_by_id("top.lang")
model_name = engine.manager.get_elem_by_id("top.model_name")
finetuning_type = engine.manager.get_elem_by_id("top.finetuning_type")
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None)
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
arg_load_btn.click(
engine.runner.load_args, [lang, config_path], list(input_elems) + [output_box], concurrency_limit=None
)
start_btn.click(engine.runner.run_train, input_elems, output_elems)
stop_btn.click(engine.runner.set_abort)
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None)
training_stage.change(change_stage, [training_stage], [dataset, packing], queue=False)
lang = engine.manager.get_elem_by_id("top.lang")
model_name: "gr.Dropdown" = engine.manager.get_elem_by_id("top.model_name")
finetuning_type: "gr.Dropdown" = engine.manager.get_elem_by_id("top.finetuning_type")
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
arg_load_btn.click(
engine.runner.load_args, [lang, config_path], list(input_elems) + [output_box], concurrency_limit=None
)
dataset.focus(list_datasets, [dataset_dir, training_stage], [dataset], queue=False)
training_stage.change(change_stage, [training_stage], [dataset, packing], queue=False)
reward_model.focus(list_checkpoints, [model_name, finetuning_type], [reward_model], queue=False)
model_name.change(list_output_dirs, [model_name, finetuning_type, initial_dir], [output_dir], queue=False)
finetuning_type.change(list_output_dirs, [model_name, finetuning_type, initial_dir], [output_dir], queue=False)
output_dir.change(
list_output_dirs, [model_name, finetuning_type, initial_dir], [output_dir], concurrency_limit=None
).then(check_output_dir, inputs=[lang, model_name, finetuning_type, output_dir], concurrency_limit=None)

View File

@ -1475,6 +1475,11 @@ ALERTS = {
"ru": "Пожалуйста, выберите адаптер.",
"zh": "请选择适配器。",
},
"err_no_output_dir": {
"en": "Please provide output dir.",
"ru": "Пожалуйста, укажите выходную директорию.",
"zh": "请填写输出目录。",
},
"err_no_reward_model": {
"en": "Please select a reward model.",
"ru": "Пожалуйста, выберите модель вознаграждения.",

View File

@ -64,10 +64,15 @@ class Runner:
return ALERTS["err_demo"][lang]
if do_train:
if not get("train.output_dir"):
return ALERTS["err_no_output_dir"][lang]
stage = TRAINING_STAGES[get("train.training_stage")]
reward_model = get("train.reward_model")
if stage == "ppo" and not reward_model:
if stage == "ppo" and not get("train.reward_model"):
return ALERTS["err_no_reward_model"][lang]
else:
if not get("eval.output_dir"):
return ALERTS["err_no_output_dir"][lang]
if not from_preview and not is_gpu_or_npu_available():
gr.Warning(ALERTS["warn_no_cuda"][lang])

View File

@ -180,7 +180,7 @@ def check_output_dir(lang: str, model_name: str, finetuning_type: str, output_di
r"""
Check if output dir exists.
"""
if os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
if model_name and output_dir and os.path.isdir(get_save_dir(model_name, finetuning_type, output_dir)):
gr.Warning(ALERTS["warn_output_dir_exists"][lang])