Merge pull request #3835 from BUAADreamer/main
fix some features in llava-style training
This commit is contained in:
commit
838f2fb3e4
|
@ -38,6 +38,20 @@
|
|||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"mllm_pt_demo": {
|
||||
"hf_hub_url": "BUAADreamer/mllm_pt_demo",
|
||||
"formatting": "sharegpt",
|
||||
"columns": {
|
||||
"messages": "messages",
|
||||
"images": "images"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "role",
|
||||
"content_tag": "content",
|
||||
"user_tag": "user",
|
||||
"assistant_tag": "assistant"
|
||||
}
|
||||
},
|
||||
"alpaca_en": {
|
||||
"hf_hub_url": "llamafactory/alpaca_en",
|
||||
"ms_hub_url": "llamafactory/alpaca_en"
|
||||
|
|
|
@ -85,6 +85,10 @@ class ModelArguments:
|
|||
default=False,
|
||||
metadata={"help": "Whethor or not to use multimodal LLM that accepts visual inputs."},
|
||||
)
|
||||
tune_mm_proj: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whethor or not only finetune mm_projector for MLLM."},
|
||||
)
|
||||
moe_aux_loss_coef: Optional[float] = field(
|
||||
default=None,
|
||||
metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."},
|
||||
|
|
|
@ -10,6 +10,7 @@ from ..extras.logging import get_logger
|
|||
from .utils.misc import find_all_linear_modules, find_expanded_modules
|
||||
from .utils.quantization import QuantizationMethod
|
||||
from .utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
|
||||
from .utils.visual import filter_vision_tower_linear
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -58,6 +59,9 @@ def init_adapter(
|
|||
if model_args.visual_inputs and hasattr(model, "vision_tower"): # freeze vision model
|
||||
model.vision_tower.requires_grad_(False)
|
||||
|
||||
if model_args.visual_inputs and hasattr(model, "language_model") and model_args.tune_mm_proj: # freeze language model if only tune mm_proj
|
||||
model.language_model.requires_grad_(False)
|
||||
|
||||
if finetuning_args.finetuning_type == "freeze" and is_trainable:
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
num_layers = (
|
||||
|
@ -180,6 +184,9 @@ def init_adapter(
|
|||
if finetuning_args.use_llama_pro:
|
||||
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
|
||||
|
||||
if model_args.visual_inputs:
|
||||
target_modules = filter_vision_tower_linear(target_modules)
|
||||
|
||||
if (
|
||||
finetuning_args.use_dora
|
||||
and getattr(model, "quantization_method", None) is not None
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import TYPE_CHECKING, Tuple
|
||||
from typing import TYPE_CHECKING, Tuple, List
|
||||
|
||||
import torch
|
||||
import transformers.models
|
||||
|
@ -82,3 +82,8 @@ def configure_visual_model(config: "PretrainedConfig") -> None:
|
|||
if getattr(config, "is_yi_vl_derived_model", None):
|
||||
logger.info("Detected Yi-VL model, applying projector patch.")
|
||||
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL
|
||||
|
||||
|
||||
def filter_vision_tower_linear(target_modules: List[str]) -> str:
|
||||
target_modules = f"^(?!.*vision_tower).*(?:{'|'.join(target_modules)}).*"
|
||||
return target_modules
|
||||
|
|
Loading…
Reference in New Issue