update readme
This commit is contained in:
parent
880b4a9acf
commit
89ca832740
|
@ -0,0 +1,19 @@
|
||||||
|
# Read the Docs configuration file
|
||||||
|
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
|
||||||
|
|
||||||
|
version: 2
|
||||||
|
|
||||||
|
build:
|
||||||
|
os: ubuntu-22.04
|
||||||
|
tools:
|
||||||
|
python: "3.8"
|
||||||
|
|
||||||
|
sphinx:
|
||||||
|
configuration: docs/source/conf.py
|
||||||
|
|
||||||
|
formats:
|
||||||
|
- pdf
|
||||||
|
|
||||||
|
python:
|
||||||
|
install:
|
||||||
|
- requirements: docs/requirements-docs.txt
|
20
README.md
20
README.md
|
@ -330,7 +330,7 @@ cd LLaMA-Factory
|
||||||
pip install -e .[torch,metrics]
|
pip install -e .[torch,metrics]
|
||||||
```
|
```
|
||||||
|
|
||||||
Extra dependencies available: torch, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
|
Extra dependencies available: torch, torch_npu, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
|
||||||
|
|
||||||
> [!TIP]
|
> [!TIP]
|
||||||
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
> Use `pip install --no-deps -e .` to resolve package conflicts.
|
||||||
|
@ -351,31 +351,27 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
|
||||||
|
|
||||||
Join [NPU user group](assets/wechat_npu.jpg).
|
Join [NPU user group](assets/wechat_npu.jpg).
|
||||||
|
|
||||||
Use `pip install -e .[torch_npu]` to install LLaMA-Factory with **[torch-npu](https://gitee.com/ascend/pytorch)** library.
|
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e .[torch_npu,metrics]`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
|
||||||
|
|
||||||
To utilize Ascend NPU devices for (distributed) training and inference, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. You can follow chapter **[install CANN](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)** in the installation tutorial to install CANN Toolkit and the kernels, or use the fast installation as following:
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# replace the url according to your choice
|
# replace the url according to your CANN version and devices
|
||||||
# install CANN Toolkit
|
# install CANN Toolkit
|
||||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
||||||
chmod +x Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
||||||
./Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
|
||||||
|
|
||||||
# install CANN Kernels
|
# install CANN Kernels
|
||||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
||||||
chmod +x Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
||||||
./Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
|
||||||
|
|
||||||
# set env variables
|
# set env variables
|
||||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
| Requirement | Minimum | Recommend |
|
| Requirement | Minimum | Recommend |
|
||||||
| ------------ | ------- | --------- |
|
| ------------ | ------- | ----------- |
|
||||||
| CANN | 8.0.RC1 | 8.0.RC1 |
|
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||||
| torch | 2.2.0 | 2.2.0 |
|
| torch | 2.1.0 | 2.1.0 |
|
||||||
| torch-npu | 2.2.0 | 2.2.0 |
|
| torch-npu | 2.1.0 | 2.1.0.post3 |
|
||||||
| deepspeed | 0.13.2 | 0.13.2 |
|
| deepspeed | 0.13.2 | 0.13.2 |
|
||||||
|
|
||||||
Docker image:
|
Docker image:
|
||||||
|
|
22
README_zh.md
22
README_zh.md
|
@ -330,7 +330,7 @@ cd LLaMA-Factory
|
||||||
pip install -e .[torch,metrics]
|
pip install -e .[torch,metrics]
|
||||||
```
|
```
|
||||||
|
|
||||||
可选的额外依赖项:torch、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
|
可选的额外依赖项:torch、torch_npu、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
|
||||||
|
|
||||||
> [!TIP]
|
> [!TIP]
|
||||||
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
|
||||||
|
@ -351,31 +351,27 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
|
||||||
|
|
||||||
加入 [NPU 用户群](assets/wechat_npu.jpg)。
|
加入 [NPU 用户群](assets/wechat_npu.jpg)。
|
||||||
|
|
||||||
使用 `pip install -e .[torch_npu]` 来安装带有 **[torch-npu](https://gitee.com/ascend/pytorch)** 的 LLaMA-Factory。
|
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e .[torch_npu,metrics]` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
|
||||||
|
|
||||||
如果使用昇腾 NPU 设备进行(分布式)训练或推理,需要安装 **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**。可以参考安装教程中的**[安装 CANN](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)**章节来进行安装,或使用以下快速安装指令:
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# 请替换 URL 为你需要的 CANN 版本对应的 URL
|
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
|
||||||
# 安装 CANN Toolkit
|
# 安装 CANN Toolkit
|
||||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
||||||
chmod +x Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
|
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
||||||
./Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
|
|
||||||
|
|
||||||
# 安装 CANN Kernels
|
# 安装 CANN Kernels
|
||||||
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
||||||
chmod +x Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
|
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
||||||
./Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
|
|
||||||
|
|
||||||
# 设置环境变量
|
# 设置环境变量
|
||||||
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
source /usr/local/Ascend/ascend-toolkit/set_env.sh
|
||||||
```
|
```
|
||||||
|
|
||||||
| 依赖项 | 至少 | 推荐 |
|
| 依赖项 | 至少 | 推荐 |
|
||||||
| ------------ | ------- | --------- |
|
| ------------ | ------- | ----------- |
|
||||||
| CANN | 8.0.RC1 | 8.0.RC1 |
|
| CANN | 8.0.RC1 | 8.0.RC1 |
|
||||||
| torch | 2.2.0 | 2.2.0 |
|
| torch | 2.1.0 | 2.1.0 |
|
||||||
| torch-npu | 2.2.0 | 2.2.0 |
|
| torch-npu | 2.1.0 | 2.1.0.post3 |
|
||||||
| deepspeed | 0.13.2 | 0.13.2 |
|
| deepspeed | 0.13.2 | 0.13.2 |
|
||||||
|
|
||||||
Docker 镜像:
|
Docker 镜像:
|
||||||
|
@ -383,7 +379,7 @@ Docker 镜像:
|
||||||
- 32GB:[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
|
- 32GB:[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
|
||||||
- 64GB:[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
|
- 64GB:[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
|
||||||
|
|
||||||
请记得使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定您使用的设备。
|
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
|
||||||
|
|
||||||
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`。
|
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`。
|
||||||
|
|
||||||
|
|
|
@ -5,16 +5,16 @@ downcast_bf16: 'no'
|
||||||
fsdp_config:
|
fsdp_config:
|
||||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||||
fsdp_backward_prefetch: BACKWARD_PRE
|
fsdp_backward_prefetch: BACKWARD_PRE
|
||||||
fsdp_cpu_ram_efficient_loading: true
|
|
||||||
fsdp_forward_prefetch: false
|
fsdp_forward_prefetch: false
|
||||||
fsdp_offload_params: true
|
fsdp_cpu_ram_efficient_loading: true
|
||||||
|
fsdp_offload_params: true # offload may affect training speed
|
||||||
fsdp_sharding_strategy: FULL_SHARD
|
fsdp_sharding_strategy: FULL_SHARD
|
||||||
fsdp_state_dict_type: FULL_STATE_DICT
|
fsdp_state_dict_type: FULL_STATE_DICT
|
||||||
fsdp_sync_module_states: true
|
fsdp_sync_module_states: true
|
||||||
fsdp_use_orig_params: false
|
fsdp_use_orig_params: true
|
||||||
machine_rank: 0
|
machine_rank: 0
|
||||||
main_training_function: main
|
main_training_function: main
|
||||||
mixed_precision: fp16
|
mixed_precision: fp16 # or bf16
|
||||||
num_machines: 1 # the number of nodes
|
num_machines: 1 # the number of nodes
|
||||||
num_processes: 2 # the number of GPUs in all nodes
|
num_processes: 2 # the number of GPUs in all nodes
|
||||||
rdzv_backend: static
|
rdzv_backend: static
|
||||||
|
|
2
setup.py
2
setup.py
|
@ -21,6 +21,7 @@ def get_requires():
|
||||||
|
|
||||||
extra_require = {
|
extra_require = {
|
||||||
"torch": ["torch>=1.13.1"],
|
"torch": ["torch>=1.13.1"],
|
||||||
|
"torch_npu": ["torch==2.1.0", "torch-npu==2.1.0.post3", "decorator"],
|
||||||
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
||||||
"deepspeed": ["deepspeed>=0.10.0,<=0.14.0"],
|
"deepspeed": ["deepspeed>=0.10.0,<=0.14.0"],
|
||||||
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
"bitsandbytes": ["bitsandbytes>=0.39.0"],
|
||||||
|
@ -33,7 +34,6 @@ extra_require = {
|
||||||
"qwen": ["tiktoken", "transformers_stream_generator"],
|
"qwen": ["tiktoken", "transformers_stream_generator"],
|
||||||
"modelscope": ["modelscope"],
|
"modelscope": ["modelscope"],
|
||||||
"quality": ["ruff"],
|
"quality": ["ruff"],
|
||||||
"torch_npu": ["torch==2.1.0", "torch_npu==2.1.0.post3", "decorator"]
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -822,6 +822,15 @@ _register_template(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
_register_template(
|
||||||
|
name="telechat",
|
||||||
|
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
|
||||||
|
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
|
||||||
|
stop_words=["<_end>"],
|
||||||
|
replace_eos=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
_register_template(
|
_register_template(
|
||||||
name="vicuna",
|
name="vicuna",
|
||||||
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
|
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
|
||||||
|
@ -918,13 +927,3 @@ _register_template(
|
||||||
format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]),
|
format_user=StringFormatter(slots=["<human>:{{content}}\n<bot>:"]),
|
||||||
format_separator=EmptyFormatter(slots=["\n"]),
|
format_separator=EmptyFormatter(slots=["\n"]),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
_register_template(
|
|
||||||
name="telechat",
|
|
||||||
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
|
|
||||||
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
|
|
||||||
default_system="",
|
|
||||||
stop_words=["<_end>"],
|
|
||||||
replace_eos=True,
|
|
||||||
)
|
|
||||||
|
|
|
@ -1095,6 +1095,26 @@ register_model_group(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
register_model_group(
|
||||||
|
models={
|
||||||
|
"TeleChat-7B-Chat": {
|
||||||
|
DownloadSource.DEFAULT: "Tele-AI/telechat-7B",
|
||||||
|
DownloadSource.MODELSCOPE: "TeleAI/telechat-7B",
|
||||||
|
},
|
||||||
|
"TeleChat-12B-Chat": {
|
||||||
|
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B",
|
||||||
|
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B",
|
||||||
|
},
|
||||||
|
"TeleChat-12B-v2-Chat": {
|
||||||
|
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B-v2",
|
||||||
|
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B-v2",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
module="query,key_value",
|
||||||
|
template="telechat",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
register_model_group(
|
register_model_group(
|
||||||
models={
|
models={
|
||||||
"Vicuna1.5-7B-Chat": {
|
"Vicuna1.5-7B-Chat": {
|
||||||
|
@ -1355,19 +1375,3 @@ register_model_group(
|
||||||
},
|
},
|
||||||
template="zephyr",
|
template="zephyr",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
register_model_group(
|
|
||||||
models={
|
|
||||||
"TeleChat-12B-Chat": {
|
|
||||||
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B",
|
|
||||||
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B",
|
|
||||||
},
|
|
||||||
"TeleChat-12B-v2-Chat": {
|
|
||||||
DownloadSource.DEFAULT: "Tele-AI/TeleChat-12B-v2",
|
|
||||||
DownloadSource.MODELSCOPE: "TeleAI/TeleChat-12B-v2",
|
|
||||||
},
|
|
||||||
},
|
|
||||||
module='query,key_value',
|
|
||||||
template="telechat",
|
|
||||||
)
|
|
||||||
|
|
Loading…
Reference in New Issue