commit
9324940b76
131
src/api_demo.py
131
src/api_demo.py
|
@ -15,17 +15,15 @@
|
|||
|
||||
|
||||
import json
|
||||
import datetime
|
||||
import torch
|
||||
import uvicorn
|
||||
import datetime
|
||||
from threading import Thread
|
||||
from fastapi import FastAPI, Request
|
||||
from starlette.responses import StreamingResponse
|
||||
from transformers import TextIteratorStreamer
|
||||
|
||||
from utils import (
|
||||
Template,
|
||||
load_pretrained,
|
||||
prepare_infer_args,
|
||||
get_logits_processor
|
||||
)
|
||||
from utils import Template, load_pretrained, prepare_infer_args, get_logits_processor
|
||||
|
||||
|
||||
def torch_gc():
|
||||
|
@ -40,61 +38,124 @@ def torch_gc():
|
|||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer, prompt_template, source_prefix, generating_args
|
||||
global model, tokenizer
|
||||
|
||||
# Parse the request JSON
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get("prompt")
|
||||
history = json_post_list.get("history")
|
||||
max_new_tokens = json_post_list.get("max_new_tokens", None)
|
||||
top_p = json_post_list.get("top_p", None)
|
||||
temperature = json_post_list.get("temperature", None)
|
||||
prompt = json_post_raw.get("messages")[-1]["content"]
|
||||
history = json_post_raw.get("messages")[:-1]
|
||||
max_token = json_post_raw.get("max_tokens", None)
|
||||
top_p = json_post_raw.get("top_p", None)
|
||||
temperature = json_post_raw.get("temperature", None)
|
||||
stream = check_stream(json_post_raw.get("stream"))
|
||||
|
||||
# Tokenize the input prompt
|
||||
input_ids = tokenizer([prompt_template.get_prompt(prompt, history, source_prefix)], return_tensors="pt")["input_ids"]
|
||||
if stream:
|
||||
generate = predict(prompt, max_token, top_p, temperature, history)
|
||||
return StreamingResponse(generate, media_type="text/event-stream")
|
||||
|
||||
input_ids = tokenizer([prompt_template.get_prompt(prompt, history, source_prefix)], return_tensors="pt")[
|
||||
"input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
# Generation arguments
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["input_ids"] = input_ids
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
gen_kwargs["max_new_tokens"] = max_new_tokens if max_new_tokens else gen_kwargs["max_new_tokens"]
|
||||
gen_kwargs["max_new_tokens"] = max_token if max_token else gen_kwargs["max_new_tokens"]
|
||||
gen_kwargs["top_p"] = top_p if top_p else gen_kwargs["top_p"]
|
||||
gen_kwargs["temperature"] = temperature if temperature else gen_kwargs["temperature"]
|
||||
|
||||
# Generate response
|
||||
with torch.no_grad():
|
||||
generation_output = model.generate(**gen_kwargs)
|
||||
generation_output = model.generate(**gen_kwargs)
|
||||
|
||||
outputs = generation_output.tolist()[0][len(input_ids[0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
# Update history
|
||||
history = history + [(prompt, response)]
|
||||
|
||||
# Prepare response
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": repr(response),
|
||||
"history": repr(history),
|
||||
"status": 200,
|
||||
"time": time
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": response
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
# Log and clean up
|
||||
log = "[" + time + "] " + "\", prompt:\"" + prompt + "\", response:\"" + repr(response) + "\""
|
||||
log = (
|
||||
"["
|
||||
+ time
|
||||
+ "] "
|
||||
+ "\", prompt:\""
|
||||
+ prompt
|
||||
+ "\", response:\""
|
||||
+ repr(response)
|
||||
+ "\""
|
||||
)
|
||||
print(log)
|
||||
torch_gc()
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
def check_stream(stream):
|
||||
if isinstance(stream, bool):
|
||||
# stream 是布尔类型,直接使用
|
||||
stream_value = stream
|
||||
else:
|
||||
# 不是布尔类型,尝试进行类型转换
|
||||
if isinstance(stream, str):
|
||||
stream = stream.lower()
|
||||
if stream in ["true", "false"]:
|
||||
# 使用字符串值转换为布尔值
|
||||
stream_value = stream == "true"
|
||||
else:
|
||||
# 非法的字符串值
|
||||
stream_value = False
|
||||
else:
|
||||
# 非布尔类型也非字符串类型
|
||||
stream_value = False
|
||||
return stream_value
|
||||
|
||||
|
||||
async def predict(query, max_length, top_p, temperature, history):
|
||||
global model, tokenizer
|
||||
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
gen_kwargs = {
|
||||
"input_ids": input_ids,
|
||||
"do_sample": generating_args.do_sample,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"num_beams": generating_args.num_beams,
|
||||
"max_length": max_length,
|
||||
"repetition_penalty": generating_args.repetition_penalty,
|
||||
"logits_processor": get_logits_processor(),
|
||||
"streamer": streamer
|
||||
}
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
|
||||
for new_text in streamer:
|
||||
answer = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": new_text
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
yield "data: " + json.dumps(answer) + '\n\n'
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
|
||||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||||
|
||||
|
|
Loading…
Reference in New Issue