support mixtral

This commit is contained in:
hiyouga 2023-12-12 11:39:04 +08:00
parent f4657de7d5
commit 96380f5e18
6 changed files with 52 additions and 39 deletions

View File

@ -55,9 +55,11 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog ## Changelog
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework.
[23/12/01] We supported downloading pre-trained models from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-models-optional) for usage. [23/12/01] We supported downloading pre-trained models from the **[ModelScope Hub](https://modelscope.cn/models)** for Chinese mainland users. See [this tutorial](#use-modelscope-models-optional) for usage.
[23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neft_alpha` argument to activate NEFTune, e.g., `--neft_alpha 5`. [23/10/21] We supported **[NEFTune](https://arxiv.org/abs/2310.05914)** trick for fine-tuning. Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.
<details><summary>Full Changelog</summary> <details><summary>Full Changelog</summary>
@ -101,6 +103,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - | | [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 | | [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral | | [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - | | [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen | | [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse | | [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
@ -206,13 +209,13 @@ huggingface-cli login
### Hardware Requirement ### Hardware Requirement
| Method | Bits | 7B | 13B | 30B | 65B | | Method | Bits | 7B | 13B | 30B | 65B | 8x7B |
| ------ | ---- | ----- | ----- | ----- | ------ | | ------ | ---- | ----- | ----- | ----- | ------ | ------ |
| Full | 16 | 160GB | 320GB | 600GB | 1200GB | | Full | 16 | 160GB | 320GB | 600GB | 1200GB | 1000GB |
| Freeze | 16 | 20GB | 40GB | 120GB | 240GB | | Freeze | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | | LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | | QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
## Getting Started ## Getting Started

View File

@ -55,9 +55,11 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
## 更新日志 ## 更新日志
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。
[23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型。详细用法请参照 [此教程](#使用魔搭社区可跳过)。 [23/12/01] 我们支持了从 **[魔搭社区](https://modelscope.cn/models)** 下载预训练模型。详细用法请参照 [此教程](#使用魔搭社区可跳过)。
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune例如 `--neft_alpha 5`。 [23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neftune_noise_alpha` 参数启用 NEFTune例如 `--neftune_noise_alpha 5`。
<details><summary>展开日志</summary> <details><summary>展开日志</summary>
@ -101,6 +103,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - | | [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 | | [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral | | [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Mixtral](https://huggingface.co/mistralai) | 8x7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - | | [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
| [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen | | [Qwen](https://github.com/QwenLM/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse | | [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
@ -206,13 +209,13 @@ huggingface-cli login
### 硬件依赖 ### 硬件依赖
| 训练方法 | 精度 | 7B | 13B | 30B | 65B | | 训练方法 | 精度 | 7B | 13B | 30B | 65B | 8x7B |
| ------- | ---- | ----- | ----- | ----- | ------ | | ------- | ---- | ----- | ----- | ----- | ------ | ------ |
| 全参数 | 16 | 160GB | 320GB | 600GB | 1200GB | | 全参数 | 16 | 160GB | 320GB | 600GB | 1200GB | 1000GB |
| 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | | 部分参数 | 16 | 20GB | 40GB | 120GB | 240GB | 200GB |
| LoRA | 16 | 16GB | 32GB | 80GB | 160GB | | LoRA | 16 | 16GB | 32GB | 80GB | 160GB | 120GB |
| QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | | QLoRA | 8 | 10GB | 16GB | 40GB | 80GB | 80GB |
| QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | | QLoRA | 4 | 6GB | 12GB | 24GB | 48GB | 32GB |
## 如何使用 ## 如何使用

View File

@ -1,5 +1,5 @@
torch>=1.13.1 torch>=1.13.1
transformers>=4.31.0,<4.35.0 transformers>=4.36.0
datasets>=2.14.3 datasets>=2.14.3
accelerate>=0.21.0 accelerate>=0.21.0
peft>=0.7.0 peft>=0.7.0

View File

@ -541,9 +541,7 @@ register_template(
"[INST] {{query}} [/INST]" "[INST] {{query}} [/INST]"
], ],
system="", system="",
sep=[ sep=[]
" "
]
) )

View File

@ -382,6 +382,22 @@ register_model_group(
"Mistral-7B-Chat": { "Mistral-7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1", DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.1",
DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1" DownloadSource.MODELSCOPE: "AI-ModelScope/Mistral-7B-Instruct-v0.1"
},
"Mistral-7B-v0.2-Chat": {
DownloadSource.DEFAULT: "mistralai/Mistral-7B-Instruct-v0.2"
}
},
template="mistral"
)
register_model_group(
models={
"Mixtral-8x7B": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-v0.1"
},
"Mixtral-8x7B-Chat": {
DownloadSource.DEFAULT: "mistralai/Mixtral-8x7B-Instruct-v0.1"
} }
}, },
template="mistral" template="mistral"

View File

@ -25,7 +25,6 @@ except ImportError: # https://github.com/huggingface/transformers/releases/tag/v
from llmtuner.extras.logging import get_logger from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import count_parameters, get_current_device, infer_optim_dtype, try_download_model_from_ms from llmtuner.extras.misc import count_parameters, get_current_device, infer_optim_dtype, try_download_model_from_ms
from llmtuner.extras.packages import is_flash_attn2_available from llmtuner.extras.packages import is_flash_attn2_available
from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.hparams import FinetuningArguments from llmtuner.hparams import FinetuningArguments
from llmtuner.model.adapter import init_adapter from llmtuner.model.adapter import init_adapter
from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training, resize_embedding_layer from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training, resize_embedding_layer
@ -38,7 +37,7 @@ if TYPE_CHECKING:
logger = get_logger(__name__) logger = get_logger(__name__)
require_version("transformers>=4.31.0,<4.35.0", "To fix: pip install \"transformers>=4.31.0,<4.35.0\"") require_version("transformers>=4.36.0", "To fix: pip install transformers>=4.36.0")
require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3") require_version("datasets>=2.14.3", "To fix: pip install datasets>=2.14.3")
require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0") require_version("accelerate>=0.21.0", "To fix: pip install accelerate>=0.21.0")
require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0") require_version("peft>=0.7.0", "To fix: pip install peft>=0.7.0")
@ -124,28 +123,22 @@ def load_model_and_tokenizer(
# Set FlashAttention-2 # Set FlashAttention-2
if model_args.flash_attn: if model_args.flash_attn:
if getattr(config, "model_type", None) == "llama": if not is_flash_attn2_available():
if is_flash_attn2_available(): logger.warning("FlashAttention-2 is not installed.")
LlamaModule.LlamaAttention = LlamaPatches.LlamaFlashAttention2 elif getattr(config, "model_type", None) == "qwen":
LlamaModule.LlamaModel._prepare_decoder_attention_mask = LlamaPatches._prepare_decoder_attention_mask
logger.info("Using FlashAttention-2 for faster training and inference.")
else:
logger.warning("FlashAttention-2 is not installed.")
elif getattr(config, "model_type", None) in ["qwen", "Yi"]:
logger.info("Current model automatically enables FlashAttention if installed.") logger.info("Current model automatically enables FlashAttention if installed.")
else: else:
logger.warning("Current model does not support FlashAttention.") setattr(config, "attn_implementation", "flash_attention_2")
elif is_trainable and model_args.shift_attn and getattr(config, "model_type", None) == "llama": logger.info("Using FlashAttention-2 for faster training and inference.")
LlamaModule.LlamaAttention = LlamaPatches.LlamaShiftShortAttention
logger.warning("Using `--flash_attn` for faster training in large context length.")
# Set shift short attention (S^2-Attn) # Set shift short attention (S^2-Attn)
if is_trainable and model_args.shift_attn: if is_trainable and model_args.shift_attn:
if getattr(config, "model_type", None) == "llama": logger.warning("Shift short attention is temporarily invalid due to breaking changes.")
setattr(config, "group_size_ratio", 0.25) # if getattr(config, "model_type", None) == "llama":
logger.info("Using shift short attention with group_size_ratio=1/4.") # setattr(config, "group_size_ratio", 0.25)
else: # logger.info("Using shift short attention with group_size_ratio=1/4.")
logger.warning("Current model does not support shift short attention.") # else:
# logger.warning("Current model does not support shift short attention.")
# Quantization configurations (using gptq or awq) # Quantization configurations (using gptq or awq)
if getattr(config, "quantization_config", None): if getattr(config, "quantization_config", None):