Update data_utils.py
This commit is contained in:
parent
a5b809516e
commit
97a0e291c7
|
@ -13,16 +13,15 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
from enum import Enum, unique
|
from enum import Enum, unique
|
||||||
from typing import TYPE_CHECKING, Dict, List, Sequence, Set, Union
|
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Set, TypedDict, Union
|
||||||
|
|
||||||
from datasets import concatenate_datasets, interleave_datasets
|
from datasets import DatasetDict, concatenate_datasets, interleave_datasets
|
||||||
|
|
||||||
from ..extras.logging import get_logger
|
from ..extras.logging import get_logger
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from datasets import Dataset, IterableDataset
|
from datasets import Dataset, IterableDataset
|
||||||
from transformers import Seq2SeqTrainingArguments
|
|
||||||
|
|
||||||
from ..hparams import DataArguments
|
from ..hparams import DataArguments
|
||||||
|
|
||||||
|
@ -42,24 +41,29 @@ class Role(str, Enum):
|
||||||
OBSERVATION = "observation"
|
OBSERVATION = "observation"
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetModule(TypedDict):
|
||||||
|
train_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||||
|
eval_dataset: Optional[Union["Dataset", "IterableDataset"]]
|
||||||
|
|
||||||
|
|
||||||
def merge_dataset(
|
def merge_dataset(
|
||||||
all_datasets: List[Union["Dataset", "IterableDataset"]],
|
all_datasets: List[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", seed: int
|
||||||
data_args: "DataArguments",
|
|
||||||
training_args: "Seq2SeqTrainingArguments",
|
|
||||||
) -> Union["Dataset", "IterableDataset"]:
|
) -> Union["Dataset", "IterableDataset"]:
|
||||||
if len(all_datasets) == 1:
|
if len(all_datasets) == 1:
|
||||||
return all_datasets[0]
|
return all_datasets[0]
|
||||||
elif data_args.mix_strategy == "concat":
|
elif data_args.mix_strategy == "concat":
|
||||||
if data_args.streaming:
|
if data_args.streaming:
|
||||||
logger.warning("The samples between different datasets will not be mixed in streaming mode.")
|
logger.warning("The samples between different datasets will not be mixed in streaming mode.")
|
||||||
|
|
||||||
return concatenate_datasets(all_datasets)
|
return concatenate_datasets(all_datasets)
|
||||||
elif data_args.mix_strategy.startswith("interleave"):
|
elif data_args.mix_strategy.startswith("interleave"):
|
||||||
if not data_args.streaming:
|
if not data_args.streaming:
|
||||||
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.")
|
||||||
|
|
||||||
return interleave_datasets(
|
return interleave_datasets(
|
||||||
datasets=all_datasets,
|
datasets=all_datasets,
|
||||||
probabilities=data_args.interleave_probs,
|
probabilities=data_args.interleave_probs,
|
||||||
seed=training_args.seed,
|
seed=seed,
|
||||||
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted",
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
@ -67,22 +71,17 @@ def merge_dataset(
|
||||||
|
|
||||||
|
|
||||||
def split_dataset(
|
def split_dataset(
|
||||||
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments"
|
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", seed: int
|
||||||
) -> Dict[str, "Dataset"]:
|
) -> "DatasetDict":
|
||||||
if training_args.do_train:
|
r"""
|
||||||
if data_args.val_size > 1e-6: # Split the dataset
|
Splits the dataset and returns a dataset dict containing train set (required) and validation set (optional).
|
||||||
|
"""
|
||||||
if data_args.streaming:
|
if data_args.streaming:
|
||||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=seed)
|
||||||
val_set = dataset.take(int(data_args.val_size))
|
val_set = dataset.take(int(data_args.val_size))
|
||||||
train_set = dataset.skip(int(data_args.val_size))
|
train_set = dataset.skip(int(data_args.val_size))
|
||||||
return {"train_dataset": train_set, "eval_dataset": val_set}
|
return DatasetDict({"train": train_set, "validation": val_set})
|
||||||
else:
|
else:
|
||||||
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
|
||||||
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
|
dataset = dataset.train_test_split(test_size=val_size, seed=seed)
|
||||||
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
|
return DatasetDict({"train": dataset["train"], "validation": dataset["test"]})
|
||||||
else:
|
|
||||||
if data_args.streaming:
|
|
||||||
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
|
|
||||||
return {"train_dataset": dataset}
|
|
||||||
else: # do_eval or do_predict
|
|
||||||
return {"eval_dataset": dataset}
|
|
||||||
|
|
Loading…
Reference in New Issue