Merge branch 'main' of https://osredm.com/p04798526/LLaMA-Factory-310P3
This commit is contained in:
commit
9bbf989502
|
@ -0,0 +1 @@
|
|||
bash run_once.sh lora_sft Qwen-7B 4 50
|
|
@ -1,16 +1,17 @@
|
|||
import json
|
||||
import sys
|
||||
import pynvml
|
||||
import time
|
||||
import psutil
|
||||
|
||||
UNIT = 1024 * 1024 * 1024
|
||||
|
||||
def main():
|
||||
UNIT = 1024 * 1024 * 1024
|
||||
|
||||
def gpu_status(output_path = "./results/gpu_status", print_status = False, sleep_time = 60):
|
||||
pynvml.nvmlInit()
|
||||
gpuDeviceCount = pynvml.nvmlDeviceGetCount()
|
||||
start_time = time.time()
|
||||
|
||||
first_loop = True
|
||||
|
||||
while time.time() - start_time < 3600 *24:
|
||||
# print(time.time() - start_time)
|
||||
all_gpu_status = []
|
||||
|
@ -43,14 +44,26 @@ def main():
|
|||
all_gpu_status = all_gpu_status,
|
||||
all_processes_status = all_processes_status
|
||||
)
|
||||
formatted_time = time.strftime('%Y%m%d%H%M%S', time.localtime())
|
||||
with open(f"./results/gpu_status/gpu_status_{formatted_time}.json", "a", encoding="utf-8") as f:
|
||||
f.write(json.dumps(logs) + "\n")
|
||||
print(logs)
|
||||
|
||||
time.sleep(60)
|
||||
with open(f"{output_path}/gpu_status.json", "a", encoding="utf-8") as f:
|
||||
f.write(json.dumps(logs) + "\n")
|
||||
|
||||
if first_loop:
|
||||
print("Start run gpu_status.py")
|
||||
first_loop = False
|
||||
|
||||
if print_status:
|
||||
print(logs)
|
||||
|
||||
time.sleep(sleep_time)
|
||||
|
||||
pynvml.nvmlShutdown()
|
||||
|
||||
def main():
|
||||
output_path = sys.argv[1]
|
||||
print_status = sys.argv[2]
|
||||
sleep_time = sys.argv[3]
|
||||
gpu_status(output_path, print_status, sleep_time)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
import sys
|
||||
import yaml
|
||||
|
||||
def main():
|
||||
run_type = sys.argv[1]
|
||||
model = sys.argv[2]
|
||||
max_steps = sys.argv[3]
|
||||
run_name = sys.argv[4]
|
||||
output_dir = sys.argv[5]
|
||||
|
||||
if run_type == "lora_sft":
|
||||
yaml_file = './results/lora_sft_template.yaml'
|
||||
elif run_type == "inference":
|
||||
yaml_file = './results/predict_template.yaml'
|
||||
|
||||
model_name_or_path = ""
|
||||
template = ""
|
||||
if model == "9g-8B":
|
||||
model_name_or_path = "../../models/sft_8b_v2"
|
||||
template = ""
|
||||
elif model == "Baichuan2-7B":
|
||||
model_name_or_path = "../../models/Baichuan2-7B-Base"
|
||||
template = "baichuan2"
|
||||
elif model == "ChatGLM2-6B":
|
||||
model_name_or_path = "../../models/chatglm2-6b"
|
||||
template = "chatglm2"
|
||||
elif model == "Llama2-7B":
|
||||
model_name_or_path = "../../models/llama-2-7b-ms"
|
||||
template = "llama2"
|
||||
elif model == "Qwen-7B":
|
||||
model_name_or_path = "../../models/Qwen-7B"
|
||||
template = "qwen"
|
||||
else:
|
||||
print("ERROR: model not supported.")
|
||||
sys.exit()
|
||||
|
||||
config = None
|
||||
with open(yaml_file, 'r', encoding='utf-8') as f:
|
||||
config = yaml.load(f.read(), Loader=yaml.FullLoader)
|
||||
|
||||
|
||||
config['model_name_or_path'] = model_name_or_path
|
||||
config['template'] = template
|
||||
config['output_dir'] = output_dir
|
||||
if run_type == "lora_sft":
|
||||
config['max_steps'] = int(max_steps)
|
||||
|
||||
with open(f'{output_dir}/{run_name}.yaml', 'w', encoding='utf-8') as f:
|
||||
yaml.dump(data=config, stream=f, allow_unicode=True)
|
||||
|
||||
print(f"yaml file saved to {output_dir}/{run_name}.yaml")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,31 @@
|
|||
bf16: true
|
||||
cutoff_len: 1024
|
||||
dataset: belle_1m
|
||||
ddp_timeout: 180000000
|
||||
do_train: true
|
||||
eval_steps: 500
|
||||
eval_strategy: steps
|
||||
finetuning_type: lora
|
||||
gradient_accumulation_steps: 8
|
||||
include_num_input_tokens_seen: true
|
||||
include_tokens_per_second: true
|
||||
learning_rate: 0.0001
|
||||
logging_steps: 3
|
||||
lora_target: all
|
||||
lr_scheduler_type: cosine
|
||||
max_samples: 10000
|
||||
max_steps: '50'
|
||||
model_name_or_path: ../../models/Qwen-7B
|
||||
num_train_epochs: 10.0
|
||||
output_dir: ./results/lora_sft_Qwen-7B_4_gpu_50_step_20240905070656
|
||||
overwrite_cache: true
|
||||
overwrite_output_dir: true
|
||||
per_device_eval_batch_size: 2
|
||||
per_device_train_batch_size: 2
|
||||
plot_loss: true
|
||||
preprocessing_num_workers: 16
|
||||
save_steps: 500
|
||||
stage: sft
|
||||
template: qwen
|
||||
val_size: 0.1
|
||||
warmup_ratio: 0.1
|
|
@ -0,0 +1,42 @@
|
|||
### model
|
||||
model_name_or_path: ../../llm/baichuan
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft_2/Baichuan2-7B/Baichuan2_lora_sft_1_single_step500
|
||||
logging_steps: 3
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
include_num_input_tokens_seen: true
|
||||
include_tokens_per_second: true
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,23 @@
|
|||
### model
|
||||
model_name_or_path: ../../llm/baichuan
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
include_tokens_per_second: true
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_1
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,52 @@
|
|||
#!/bin/bash
|
||||
|
||||
run_type="$1"
|
||||
model="$2"
|
||||
gpu_cnt="$3"
|
||||
max_steps="$4"
|
||||
|
||||
current_datetime=$(date +%Y%m%d%H%M%S)
|
||||
|
||||
if [ "${run_type}"="lora_sft" ]; then
|
||||
run_name="${run_type}_${model}_${gpu_cnt}_gpu_${max_steps}_step_${current_datetime}"
|
||||
|
||||
else
|
||||
run_name="${run_type}_${model}_${gpu_cnt}_gpu_${current_datetime}"
|
||||
fi
|
||||
|
||||
output_dir="./results/${run_name}"
|
||||
|
||||
if [ ! -d "$output_dir" ]; then
|
||||
mkdir -p "$output_dir"
|
||||
echo "output_dir created: $output_dir"
|
||||
else
|
||||
echo "output_dir exists: $output_dir"
|
||||
fi
|
||||
|
||||
# echo "${run_type} ${model} ${gpu_cnt} ${max_steps} ${run_name} ${output_dir}"
|
||||
python prepare_yaml_file.py ${run_type} ${model} ${max_steps} ${run_name} ${output_dir}
|
||||
|
||||
export USE_MODELSCOPE_HUB=1
|
||||
|
||||
# echo "Start recording gpu status "
|
||||
# # 0 means not printing gpu status
|
||||
# python gpu_status.py ${output_dir} 1 10 &
|
||||
# gpu_status_pid=$!
|
||||
# echo "${gpu_status_pid}"
|
||||
|
||||
if [ "${gpu_cnt}"="1" ]; then
|
||||
ASCEND_RT_VISIBLE_DEVICES=0 llamafactory-cli train ${output_dir}/${run_name}.yaml | tee "${output_dir}/log.txt" &
|
||||
train_pid=$!
|
||||
echo "Start train"
|
||||
else
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train ${output_dir}/${run_name}.yaml | tee "${output_dir}/log.txt" &
|
||||
train_pid=$!
|
||||
echo "Start train"
|
||||
fi
|
||||
|
||||
wait $train_pid
|
||||
echo "Train ended"
|
||||
|
||||
# sleep 90
|
||||
# kill $gpu_status_pid
|
||||
# echo "Gpu status ended"
|
Loading…
Reference in New Issue