update readme and examples

This commit is contained in:
hiyouga 2024-04-22 00:37:32 +08:00
parent ddbd29d777
commit a1f1fac33b
12 changed files with 266 additions and 13 deletions

View File

@ -329,7 +329,7 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
</details>
### LLaMA Board GUI
### Train with LLaMA Board GUI
> [!IMPORTANT]
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#command-line-interface) for distributed training.
@ -381,7 +381,7 @@ docker compose -f ./docker-compose.yml up -d
</details>
### Command Line Interface
### Train with Command Line Interface
See [examples/README.md](examples/README.md) for usage.
@ -397,7 +397,7 @@ CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
--vllm_enforce_eager
```
### Use ModelScope Hub
### Download from ModelScope Hub
If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
@ -405,7 +405,7 @@ If you have trouble with downloading models and datasets from Hugging Face, you
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
```
Train the model by specifying a model ID of the ModelScope Hub as the `--model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `modelscope/Llama-2-7b-ms`.
Train the model by specifying a model ID of the ModelScope Hub as the `--model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
## Projects using LLaMA Factory

View File

@ -329,10 +329,10 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
</details>
### LLaMA Board 可视化界面
### 利用 LLaMA Board 可视化界面训练
> [!IMPORTANT]
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#命令行接口)来进行分布式训练。
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#命令行接口)来进行多 GPU 分布式训练。
#### 使用本地环境
@ -381,13 +381,13 @@ docker compose -f ./docker-compose.yml up -d
</details>
### 命令行接口
### 利用命令行接口训练
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
使用 `python src/train_bash.py -h` 查看参数文档。
您可以执行 `python src/train_bash.py -h`查看参数文档。
### 使用 OpenAI 风格 API 和 vLLM 部署
### 利用 vLLM 部署 OpenAI API
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
@ -397,7 +397,7 @@ CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
--vllm_enforce_eager
```
### 使用魔搭社区
### 从魔搭社区下载
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
@ -405,7 +405,7 @@ CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
```
`--model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `modelscope/Llama-2-7b-ms`。
`--model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`。
## 使用了 LLaMA Factory 的项目

View File

@ -18,7 +18,8 @@ examples/
│ └── aqlm.sh: Fine-tune 2-bit AQLM models using QLoRA
├── lora_multi_gpu/
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
│ └── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
│ ├── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
│ └── ds_zero3.sh: Fine-tune model with DeepSpeed ZeRO-3 using LoRA
├── full_multi_gpu/
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes

View File

@ -18,7 +18,8 @@ examples/
│ └── aqlm.sh: 基于 QLoRA 微调 2 比特 AQLM 模型
├── lora_multi_gpu/
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
│ └── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
│ ├── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
│ └── ds_zero3.sh: 使用 DeepSpeed ZeRO-3 进行 LoRA 训练
├── full_multi_gpu/
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练

View File

@ -0,0 +1,35 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--use_badam \
--badam_switch_mode descending \
--badam_switch_block_every 50 \
--badam_verbose 2 \
--output_dir ../../../saves/LLaMA2-7B/badam/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@ -0,0 +1,41 @@
#!/bin/bash
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
pip install "transformers>=4.39.1"
pip install "accelerate>=0.28.0"
pip install "bitsandbytes>=0.43.0"
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file ../../accelerate/fsdp_config.yaml \
../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-70b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../../saves/LLaMA2-70B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--quantization_bit 4 \
--plot_loss \
--fp16

View File

@ -0,0 +1,36 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--use_galore \
--galore_layerwise \
--galore_target mlp,self_attn \
--galore_rank 128 \
--galore_scale 2.0 \
--output_dir ../../../saves/LLaMA2-7B/galore/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 1 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@ -0,0 +1,6 @@
#!/bin/bash
python ../../../scripts/llama_pro.py \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--output_dir ../../../models/llama2-7b-pro \
--num_expand 8

View File

@ -0,0 +1,34 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path ../../../models/llama2-7b-pro \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type freeze \
--name_module_trainable all \
--num_layer_trainable 8 \
--use_llama_pro \
--output_dir ../../../saves/LLaMA2-7B-Pro/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -0,0 +1,33 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--loraplus_lr_ratio 16.0 \
--output_dir ../../saves/LLaMA2-7B/loraplus/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -0,0 +1,33 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../../data \
--template default \
--finetuning_type full \
--mixture_of_depths convert \
--output_dir ../../../saves/LLaMA2-7B/mod/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--optim paged_adamw_8bit \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--pure_bf16

View File

@ -0,0 +1,33 @@
#!/bin/bash
deepspeed --num_gpus 4 ../../src/train_bash.py \
--deepspeed ../deepspeed/ds_z3_config.json \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--ddp_timeout 180000000 \
--plot_loss \
--fp16