support multiturn training like FastChat

This commit is contained in:
hiyouga 2023-06-14 22:27:39 +08:00
parent 875e8e2349
commit b6faf0207d
5 changed files with 166 additions and 108 deletions

View File

@ -50,6 +50,9 @@ async def create_item(request: Request):
json_post_list = json.loads(json_post)
prompt = json_post_list.get("prompt")
history = json_post_list.get("history")
max_new_tokens = json_post_list.get("max_new_tokens", None)
top_p = json_post_list.get("top_p", None)
temperature = json_post_list.get("temperature", None)
# Tokenize the input prompt
input_ids = tokenizer([prompt_template.get_prompt(prompt, history)], return_tensors="pt")["input_ids"]
@ -59,6 +62,9 @@ async def create_item(request: Request):
gen_kwargs = generating_args.to_dict()
gen_kwargs["input_ids"] = input_ids
gen_kwargs["logits_processor"] = get_logits_processor()
gen_kwargs["max_new_tokens"] = max_new_tokens if max_new_tokens else gen_kwargs["max_new_tokens"]
gen_kwargs["top_p"] = top_p if top_p else gen_kwargs["top_p"]
gen_kwargs["temperature"] = temperature if temperature else gen_kwargs["temperature"]
# Generate response
with torch.no_grad():

View File

@ -16,23 +16,27 @@ from transformers import TextIteratorStreamer
def main():
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
model, tokenizer = load_pretrained(model_args, finetuning_args)
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
prompt_template = Template(data_args.prompt_template)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
def predict_and_print(query, history: list):
def predict_and_print(query, history: list) -> list:
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = generating_args.to_dict()
gen_kwargs["input_ids"] = input_ids
gen_kwargs["logits_processor"] = get_logits_processor()
gen_kwargs["streamer"] = streamer
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
print("{}: ".format(model_name), end="", flush=True)
response = ""
print("{}: ".format(model_name), end="")
for new_text in streamer:
print(new_text, end="", flush=True)
response += new_text

View File

@ -421,18 +421,17 @@ def preprocess_data(
prompt_template = Template(data_args.prompt_template)
# support question with a single answer or multiple answers
def format_example(examples):
def get_dialog(examples):
for i in range(len(examples["prompt"])):
if examples["prompt"][i] and examples["response"][i]:
query, answer = examples["prompt"][i], examples["response"][i]
if examples["query"][i]:
query += "\n" + examples["query"][i]
prompt = prompt_template.get_prompt(query, examples["history"][i], prefix)
yield prompt, answer
query = query + "\n" + examples["query"][i] if examples["query"][i] else query
dialog = prompt_template.get_dialog(query, answer, examples["history"][i], prefix)
yield dialog
def preprocess_pretrain_dataset(examples):
# build grouped texts with format `<s> X1 X2 X3 ...` (without </s>)
text_ids = tokenizer(examples["prompt"])["input_ids"]
# build grouped texts with format `X1 X2 X3 ...` (without [BOS] and [EOS])
text_ids = tokenizer(examples["prompt"], add_special_tokens=False)["input_ids"]
concatenated_ids = list(chain(*text_ids))
total_length = len(concatenated_ids)
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
@ -446,28 +445,29 @@ def preprocess_data(
}
def preprocess_supervised_dataset(examples):
# build inputs with format `X <s> Y </s>` and labels with format `<ignore> ... <ignore> <s> Y </s>`
# build inputs with format `X [BOS] Y [EOS]` and labels with format `[IGNORE] ... [IGNORE] Y [EOS]`
# for input with history, we build multiple input-label pairs just like:
# https://github.com/lm-sys/FastChat/blob/f17c092f64840fa6354ed52789dccb2daa793d0b/fastchat/train/train.py#L112
model_inputs = {"input_ids": [], "labels": []}
for prompt, answer in format_example(examples):
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
for dialog in get_dialog(examples):
input_ids, labels = [], []
if len(source_ids) > data_args.max_source_length - 1: # bos token
source_ids = source_ids[:data_args.max_source_length - 1]
if len(target_ids) > data_args.max_target_length - 1: # eos token
target_ids = target_ids[:data_args.max_target_length - 1]
for i in range(len(dialog) // 2):
source_ids = tokenizer.encode(text=dialog[2*i], add_special_tokens=False)
target_ids = tokenizer.encode(text=dialog[2*i+1], add_special_tokens=False)
input_ids += source_ids + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
labels += [IGNORE_INDEX] * (len(source_ids) + 1) + target_ids + [tokenizer.eos_token_id]
input_ids = source_ids + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
labels = [IGNORE_INDEX] * len(source_ids) + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
model_inputs["input_ids"].append(input_ids[:data_args.max_source_length + data_args.max_target_length])
model_inputs["labels"].append(labels[:data_args.max_source_length + data_args.max_target_length])
return model_inputs
def preprocess_unsupervised_dataset(examples):
# build inputs with format `X <s>` and labels with format `Y <s>`
# build inputs with format `X [BOS]` and labels with format `Y [BOS]`
model_inputs = {"input_ids": [], "labels": []}
for prompt, answer in format_example(examples):
for dialog in get_dialog(examples):
prompt, answer = "".join(dialog[:-1]), dialog[-1]
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
@ -484,9 +484,11 @@ def preprocess_data(
return model_inputs
def preprocess_pairwise_dataset(examples):
# build input pairs with format `X <s> Y1 </s>` and `X <s> Y2 </s>`
# build input pairs with format `X [BOS] Y1 [EOS]` and `X [BOS] Y2 [EOS]`
model_inputs = {"accept_ids": [], "reject_ids": []}
for prompt, answer in format_example(examples):
for dialog in get_dialog(examples):
prompt, answer = "".join(dialog[:-1]), dialog[-1]
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
accept_ids = tokenizer.encode(text=answer[0], add_special_tokens=False)
reject_ids = tokenizer.encode(text=answer[1], add_special_tokens=False)

View File

@ -1,4 +1,4 @@
from typing import Optional
from typing import List, Optional
from dataclasses import dataclass
@ -8,89 +8,131 @@ class Template:
name: str
def __post_init__(self):
assert hasattr(self, "_format_{}".format(self.name)), "Template {} does not exist.".format(self.name)
if self.name == "vanilla":
r"""
Supports language model inference without histories.
"""
self._register_template(
prefix="",
prompt="",
sep="",
use_history=False
)
elif self.name == "alpaca":
r"""
Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
https://github.com/ymcui/Chinese-LLaMA-Alpaca
"""
self._register_template(
prefix="Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n",
prompt="### Instruction:\n{query}\n\n### Response:\n",
sep="\n\n",
use_history=True
)
elif self.name == "vicuna":
r"""
Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://huggingface.co/lmsys/vicuna-13b-delta-v1.1
"""
self._register_template(
prefix="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
prompt="USER: {query} ASSISTANT: ",
sep="</s>",
use_history=True
)
elif self.name == "belle":
r"""
Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B
"""
self._register_template(
prefix="",
prompt="Human: {query}\n\nBelle: ",
sep="\n\n",
use_history=True
)
elif self.name == "linly":
r"""
Supports: https://github.com/CVI-SZU/Linly
"""
self._register_template(
prefix="",
prompt="User: {query}\nBot: ",
sep="\n",
use_history=True
)
elif self.name == "billa":
r"""
Supports: https://github.com/Neutralzz/BiLLa
"""
self._register_template(
prefix="",
prompt="Human: {query}\nAssistant: ",
sep="\n",
use_history=True
)
elif self.name == "ziya":
r"""
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
"""
self._register_template(
prefix="",
prompt="<human>:{query}\n<bot>:",
sep="\n",
use_history=True
)
elif self.name == "aquila":
r"""
Supports: https://huggingface.co/qhduan/aquilachat-7b
"""
self._register_template(
prefix="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
prompt="Human: {query}\nAssistant: ",
sep="###",
use_history=True
)
else:
raise ValueError("Template {} does not exist.".format(self.name))
def get_prompt(self, query: str, history: Optional[list] = None, prefix: Optional[str] = "") -> str:
return getattr(self, "_format_{}".format(self.name))(query, history, prefix)
def _format_vanilla(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
r"""
Use for language model inference without histories.
Returns a string containing prompt without response.
"""
return query
return "".join(self._format_example(query, history, prefix))
def _format_alpaca(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
def get_dialog(self, query: str, resp: str, history: Optional[list] = None, prefix: Optional[str] = "") -> List[str]:
r"""
Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
https://github.com/ymcui/Chinese-LLaMA-Alpaca
Returns a list containing 2 * n elements where the 2k-th is a query and the (2k+1)-th is a response.
"""
if prefix:
prompt = prefix
else:
prompt = "Below is an instruction that describes a task. "
prompt += "Write a response that appropriately completes the request.\n\n"
if history:
for old_query, response in history:
prompt += "### Instruction:\n{}\n\n### Response:\n{}\n\n".format(old_query, response)
prompt += "### Instruction:\n{}\n\n### Response:\n".format(query)
return prompt
return self._format_example(query, history, prefix) + [resp]
def _format_vicuna(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
r"""
Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://huggingface.co/lmsys/vicuna-13b-delta-v1.1
"""
if prefix:
prompt = prefix
else:
prompt = "A chat between a curious user and an artificial intelligence assistant. "
prompt += "The assistant gives helpful, detailed, and polite answers to the user's questions. "
if history:
for old_query, response in history:
prompt += "USER: {} ASSISTANT: {}</s>".format(old_query, response)
prompt += "USER: {} ASSISTANT: ".format(query)
return prompt
def _register_template(self, prefix: str, prompt: str, sep: str, use_history: Optional[bool] = True) -> None:
self.prefix = prefix
self.prompt = prompt
self.sep = sep
self.use_history = use_history
def _format_belle(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
r"""
Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B
"""
prompt = prefix
if history:
for old_query, response in history:
prompt += "Human: {}\n\nBelle: {}\n\n".format(old_query, response)
prompt += "Human: {}\n\nBelle: ".format(query)
return prompt
def _format_linly(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
r"""
Supports: https://github.com/CVI-SZU/Linly
"""
prompt = prefix
if history:
for old_query, response in history:
prompt += "User: {}\nBot: {}\n".format(old_query, response)
prompt += "User: {}\nBot: ".format(query)
return prompt
def _format_billa(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
r"""
Supports: https://github.com/Neutralzz/BiLLa
"""
prompt = prefix
if history:
for old_query, response in history:
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
prompt += "Human: {}\nAssistant: ".format(query)
return prompt
def _format_ziya(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
r"""
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
"""
prompt = prefix
if history:
for old_query, response in history:
prompt += "<human>:{}\n<bot>:{}\n".format(old_query, response)
prompt += "<human>:{}\n<bot>:".format(query)
return prompt
def _format_example(self, query: str, history: Optional[list] = None, prefix: Optional[str] = "") -> List[str]:
prefix = prefix if prefix else self.prefix
history = history if (history and self.use_history) else []
history = history + [(query, "<dummy>")]
convs = []
for turn_idx, (user_query, bot_resp) in enumerate(history):
if turn_idx == 0:
convs.append(prefix + self.prompt.format(query=user_query))
convs.append(bot_resp)
else:
convs.append(self.sep + self.prompt.format(query=user_query))
convs.append(bot_resp)
return convs[:-1] # drop last

View File

@ -25,7 +25,6 @@ model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
model, tokenizer = load_pretrained(model_args, finetuning_args)
prompt_template = Template(data_args.prompt_template)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
def postprocess(self, y):
@ -82,9 +81,12 @@ def predict(query, chatbot, max_length, top_p, temperature, history):
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
"input_ids": input_ids,
"do_sample": True,
"do_sample": generating_args.do_sample,
"top_p": top_p,
"temperature": temperature,
"num_beams": generating_args.num_beams,
@ -93,8 +95,10 @@ def predict(query, chatbot, max_length, top_p, temperature, history):
"logits_processor": get_logits_processor(),
"streamer": streamer
}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text