Merge branch 'hiyouga:main' into main

This commit is contained in:
BUAADreamer 2024-04-23 18:46:12 +08:00 committed by GitHub
commit cde4dfe569
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 11 additions and 8 deletions

View File

@ -19,11 +19,11 @@ examples/
├── lora_multi_gpu/
│ ├── single_node.sh: Fine-tune model with Accelerate on single node using LoRA
│ ├── multi_node.sh: Fine-tune model with Accelerate on multiple nodes using LoRA
│ └── ds_zero3.sh: Fine-tune model with DeepSpeed ZeRO-3 using LoRA
│ └── ds_zero3.sh: Fine-tune model with DeepSpeed ZeRO-3 using LoRA (weight sharding)
├── full_multi_gpu/
│ ├── single_node.sh: Full fine-tune model with DeepSpeed on single node
│ ├── multi_node.sh: Full fine-tune model with DeepSpeed on multiple nodes
│ └── predict.sh: Do batch predict and compute BLEU and ROUGE scores after full tuning
│ └── predict.sh: Do parallel batch predict and compute BLEU and ROUGE scores after full tuning
├── merge_lora/
│ ├── merge.sh: Merge LoRA weights into the pre-trained models
│ └── quantize.sh: Quantize the fine-tuned model with AutoGPTQ

View File

@ -19,11 +19,11 @@ examples/
├── lora_multi_gpu/
│ ├── single_node.sh: 使用 Accelerate 进行单节点 LoRA 训练
│ ├── multi_node.sh: 使用 Accelerate 进行多节点 LoRA 训练
│ └── ds_zero3.sh: 使用 DeepSpeed ZeRO-3 进行 LoRA 训练
│ └── ds_zero3.sh: 使用 DeepSpeed ZeRO-3 进行 LoRA 训练(拆分权重)
├── full_multi_gpu/
│ ├── single_node.sh: 使用 DeepSpeed 进行单节点全量训练
│ ├── multi_node.sh: 使用 DeepSpeed 进行多节点全量训练
│ └── predict.sh: 基于全量训练进行批量预测并计算 BLEU 和 ROUGE 分数
│ └── predict.sh: 基于全量训练进行多卡批量预测并计算 BLEU 和 ROUGE 分数
├── merge_lora/
│ ├── merge.sh: 将 LoRA 权重合并到预训练模型中
│ └── quantize.sh: 使用 AutoGPTQ 量化微调后的模型

View File

@ -9,7 +9,7 @@ main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes
num_processes: 8 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []

View File

@ -9,7 +9,7 @@ main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 16 # the number of GPUs in all nodes
num_processes: 8 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []

View File

@ -1,6 +1,8 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file ../accelerate/single_config.yaml \
../../src/train_bash.py \
--stage sft \
--do_predict \
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \

View File

@ -1,4 +1,5 @@
#!/bin/bash
# also launch it on slave machine using slave_config.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file ../accelerate/master_config.yaml \

View File

@ -1,6 +1,6 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch \
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file ../accelerate/single_config.yaml \
../../src/train_bash.py \
--stage sft \