support FlashAttention2
This commit is contained in:
parent
815b92e698
commit
d8aa1404be
55
README.md
55
README.md
|
@ -12,11 +12,13 @@
|
|||
|
||||
## Changelog
|
||||
|
||||
[23/09/10] Now we support using **[FlashAttention](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs (experimental feature).
|
||||
|
||||
[23/08/18] Now we support **resuming training**, upgrade `transformers` to `4.31.0` to enjoy this feature.
|
||||
|
||||
[23/08/12] Now we support **RoPE scaling** to extend the context length of the LLaMA models. Try `--rope_scaling linear` argument in training and `--rope_scaling dynamic` argument at inference to extrapolate the position embeddings.
|
||||
|
||||
[23/08/11] Now we support **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models (experimental feature).
|
||||
[23/08/11] Now we support **[DPO training](https://arxiv.org/abs/2305.18290)** for instruction-tuned models. See [this example](#dpo-training) to train your models.
|
||||
|
||||
[23/08/03] Now we support training the **Qwen-7B** model in this repo. Try `--model_name_or_path Qwen/Qwen-7B-Chat` and `--lora_target c_attn` arguments to train the Qwen-7B model. Remember to use `--template chatml` argument when you are using the Qwen-7B-Chat model.
|
||||
|
||||
|
@ -62,8 +64,11 @@
|
|||
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | xverse |
|
||||
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
|
||||
|
||||
- **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
|
||||
- For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the corresponding template for the "chat" models.
|
||||
> **Note**
|
||||
>
|
||||
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules.
|
||||
>
|
||||
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the corresponding template for the "chat" models.
|
||||
|
||||
## Supported Training Approaches
|
||||
|
||||
|
@ -75,7 +80,9 @@
|
|||
| PPO Training | | | :white_check_mark: | :white_check_mark: |
|
||||
| DPO Training | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
- Use `--quantization_bit 4/8` argument to enable QLoRA.
|
||||
> **Note**
|
||||
>
|
||||
> Use `--quantization_bit 4/8` argument to enable QLoRA.
|
||||
|
||||
## Provided Datasets
|
||||
|
||||
|
@ -138,7 +145,9 @@ And **powerful GPUs**!
|
|||
|
||||
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
||||
|
||||
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
||||
> **Note**
|
||||
>
|
||||
> Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
||||
|
||||
### Dependence Installation (optional)
|
||||
|
||||
|
@ -164,10 +173,16 @@ CUDA_VISIBLE_DEVICES=0 python src/train_web.py
|
|||
|
||||
We strongly recommend using the all-in-one Web UI for newcomers since it can also generate training scripts **automatically**.
|
||||
|
||||
Currently the web UI only supports training on **a single GPU**.
|
||||
> **Warning**
|
||||
>
|
||||
> Currently the web UI only supports training on **a single GPU**.
|
||||
|
||||
### Train on a single GPU
|
||||
|
||||
> **Warning**
|
||||
>
|
||||
> If you want to train models on multiple GPUs, please refer to [#distributed-training](Distributed Training).
|
||||
|
||||
#### Pre-Training
|
||||
|
||||
```bash
|
||||
|
@ -300,19 +315,13 @@ accelerate config # configure the environment
|
|||
accelerate launch src/train_bash.py # arguments (same as above)
|
||||
```
|
||||
|
||||
<details><summary>Example config.yaml for training with DeepSpeed ZeRO-2</summary>
|
||||
<details><summary>Example config for LoRA training</summary>
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 4
|
||||
gradient_clipping: 0.5
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: false
|
||||
zero_stage: 2
|
||||
distributed_type: DEEPSPEED
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
|
@ -336,7 +345,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|||
... # arguments (same as above)
|
||||
```
|
||||
|
||||
<details><summary>Example ds_config.json for training with DeepSpeed ZeRO-2</summary>
|
||||
<details><summary>Example config for full-parameter training with DeepSpeed ZeRO-2</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
|
@ -387,7 +396,9 @@ python src/api_demo.py \
|
|||
--checkpoint_dir path_to_checkpoint
|
||||
```
|
||||
|
||||
Visit `http://localhost:8000/docs` for API documentation.
|
||||
> **Note**
|
||||
>
|
||||
> Visit `http://localhost:8000/docs` for API documentation.
|
||||
|
||||
### CLI Demo
|
||||
|
||||
|
@ -426,7 +437,9 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|||
--predict_with_generate
|
||||
```
|
||||
|
||||
We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
|
||||
> **Note**
|
||||
>
|
||||
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
|
||||
|
||||
### Predict
|
||||
|
||||
|
@ -445,12 +458,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|||
--predict_with_generate
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Supporting flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention)).
|
||||
- [ ] Implementing multi-query attention for faster inference.
|
||||
- [ ] Supporting full-parameter RLHF training.
|
||||
|
||||
## License
|
||||
|
||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
||||
|
|
57
README_zh.md
57
README_zh.md
|
@ -12,11 +12,13 @@
|
|||
|
||||
## 更新日志
|
||||
|
||||
[23/09/10] 现在我们支持了 LLaMA 模型的 **[FlashAttention](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2(实验性功能)。
|
||||
|
||||
[23/08/18] 现在我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能。
|
||||
|
||||
[23/08/12] 现在我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请尝试使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
||||
[23/08/12] 现在我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
|
||||
|
||||
[23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)(实验性功能)。
|
||||
[23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)。
|
||||
|
||||
[23/08/03] 现在我们支持了 **Qwen-7B** 模型的训练。请尝试使用 `--model_name_or_path Qwen/Qwen-7B-Chat` 和 `--lora_target c_attn` 参数。使用 Qwen-7B-Chat 模型时请添加 `--template chatml` 参数。
|
||||
|
||||
|
@ -62,8 +64,11 @@
|
|||
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | xverse |
|
||||
| [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 |
|
||||
|
||||
- **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
|
||||
- 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Chat)模型请务必使用对应的模板。
|
||||
> **Note**
|
||||
>
|
||||
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
|
||||
>
|
||||
> 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Chat)模型请务必使用对应的模板。
|
||||
|
||||
## 训练方法
|
||||
|
||||
|
@ -75,7 +80,9 @@
|
|||
| PPO 训练 | | | :white_check_mark: | :white_check_mark: |
|
||||
| DPO 训练 | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
- 使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
|
||||
> **Note**
|
||||
>
|
||||
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
|
||||
|
||||
## 数据集
|
||||
|
||||
|
@ -138,7 +145,9 @@ huggingface-cli login
|
|||
|
||||
关于数据集文件的格式,请参考 `data/example_dataset` 文件夹的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
|
||||
|
||||
注意:使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`。
|
||||
> **Note**
|
||||
>
|
||||
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`。
|
||||
|
||||
### 环境搭建(可跳过)
|
||||
|
||||
|
@ -164,10 +173,16 @@ CUDA_VISIBLE_DEVICES=0 python src/train_web.py
|
|||
|
||||
我们极力推荐新手使用浏览器一体化界面,因为它还可以**自动**生成运行所需的命令行脚本。
|
||||
|
||||
目前网页 UI 仅支持**单卡训练**。
|
||||
> **Warning**
|
||||
>
|
||||
> 目前网页 UI 仅支持**单卡训练**。
|
||||
|
||||
### 单 GPU 训练
|
||||
|
||||
> **Warning**
|
||||
>
|
||||
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
|
||||
|
||||
#### 预训练
|
||||
|
||||
```bash
|
||||
|
@ -299,19 +314,13 @@ accelerate config # 首先配置分布式环境
|
|||
accelerate launch src/train_bash.py # 参数同上
|
||||
```
|
||||
|
||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数微调的 Accelerate 配置示例</summary>
|
||||
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
gradient_accumulation_steps: 4
|
||||
gradient_clipping: 0.5
|
||||
offload_optimizer_device: none
|
||||
offload_param_device: none
|
||||
zero3_init_flag: false
|
||||
zero_stage: 2
|
||||
distributed_type: DEEPSPEED
|
||||
distributed_type: MULTI_GPU
|
||||
downcast_bf16: 'no'
|
||||
gpu_ids: all
|
||||
machine_rank: 0
|
||||
main_training_function: main
|
||||
mixed_precision: fp16
|
||||
|
@ -335,7 +344,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|||
... # 参数同上
|
||||
```
|
||||
|
||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数微调的 DeepSpeed 配置示例</summary>
|
||||
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
|
||||
|
||||
```json
|
||||
{
|
||||
|
@ -386,7 +395,9 @@ python src/api_demo.py \
|
|||
--checkpoint_dir path_to_checkpoint
|
||||
```
|
||||
|
||||
关于 API 文档请见 `http://localhost:8000/docs`。
|
||||
> **Note**
|
||||
>
|
||||
> 关于 API 文档请见 `http://localhost:8000/docs`。
|
||||
|
||||
### 命令行测试
|
||||
|
||||
|
@ -425,7 +436,9 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|||
--predict_with_generate
|
||||
```
|
||||
|
||||
我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
|
||||
> **Note**
|
||||
>
|
||||
> 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
|
||||
|
||||
### 模型预测
|
||||
|
||||
|
@ -444,12 +457,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|||
--predict_with_generate
|
||||
```
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] 实现 flash attention ([torch](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) / [xformers](https://github.com/facebookresearch/xformers) / [flashattn](https://github.com/Dao-AILab/flash-attention))。
|
||||
- [ ] 在推理阶段使用 Multi-query attention 进行加速。
|
||||
- [ ] 支持 RLHF 的全参数微调。
|
||||
|
||||
## 协议
|
||||
|
||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||
|
|
|
@ -0,0 +1,771 @@
|
|||
# coding=utf-8
|
||||
# Modified from:
|
||||
# [1] https://huggingface.co/Birchlabs/flash_llama/blob/main/modeling_flash_llama.py
|
||||
# [2] https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/main/modeling_flash_llama.py
|
||||
# [3] https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
||||
# With fix from Alex Birch: https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/discussions/17
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
||||
from transformers.models.llama.configuration_llama import LlamaConfig
|
||||
|
||||
|
||||
try:
|
||||
from flash_attn.flash_attn_interface import (
|
||||
flash_attn_kvpacked_func,
|
||||
flash_attn_varlen_kvpacked_func,
|
||||
)
|
||||
from flash_attn.bert_padding import unpad_input, pad_input
|
||||
flash_attn_v2_installed = True
|
||||
print('>>>> Flash Attention installed')
|
||||
except ImportError:
|
||||
flash_attn_v2_installed = False
|
||||
raise ImportError('Please install Flash Attention: `pip install flash-attn --no-build-isolation`')
|
||||
|
||||
try:
|
||||
from flash_attn.layers.rotary import apply_rotary_emb_func
|
||||
flash_rope_installed = True
|
||||
print('>>>> Flash RoPE installed')
|
||||
except ImportError:
|
||||
flash_rope_installed = False
|
||||
raise ImportError('Please install RoPE kernels: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary`')
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_CONFIG_FOR_DOC = "LlamaConfig"
|
||||
|
||||
|
||||
def rmsnorm_func(hidden_states, weight, variance_epsilon):
|
||||
input_dtype = hidden_states.dtype
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + variance_epsilon)
|
||||
return (weight * hidden_states).to(input_dtype)
|
||||
|
||||
|
||||
class LlamaRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
LlamaRMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.register_buffer(
|
||||
"variance_epsilon",
|
||||
torch.tensor(eps),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
return rmsnorm_func(hidden_states, self.weight, self.variance_epsilon)
|
||||
|
||||
|
||||
class FlashRotaryEmbedding(torch.nn.Module):
|
||||
"""
|
||||
The rotary position embeddings from RoFormer_ (Su et. al).
|
||||
A crucial insight from the method is that the query and keys are
|
||||
transformed by rotation matrices which depend on the relative positions.
|
||||
|
||||
Other implementations are available in the Rotary Transformer repo_ and in
|
||||
GPT-NeoX_, GPT-NeoX was an inspiration
|
||||
|
||||
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
||||
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
||||
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
||||
|
||||
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
||||
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
||||
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, base=10000.0, interleaved=False, scale_base=None,
|
||||
scaling_factor=1.0, pos_idx_in_fp32=True, device=None):
|
||||
"""
|
||||
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
||||
of 1st half and 2nd half (GPT-NeoX style).
|
||||
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
||||
otherwise they might be in lower precision.
|
||||
This option was added because previously (before 2023-07-02), when we construct
|
||||
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
||||
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
||||
self.inv_freq would be bf16, and the position indices are also in bf16.
|
||||
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
||||
embeddings for some positions will coincide.
|
||||
To maintain compatibility with models previously trained in pure bf16,
|
||||
we add this option.
|
||||
scaling_factor: RotaryEmbedding extended with linear scaling.
|
||||
"""
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.base = float(base)
|
||||
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
||||
# Generate and save the inverse frequency buffer (non trainable)
|
||||
inv_freq = self._compute_inv_freq(device)
|
||||
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
||||
self.interleaved = interleaved
|
||||
self.scale_base = scale_base
|
||||
self.scaling_factor = scaling_factor
|
||||
scale = ((torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
|
||||
/ (1.4 * dim) if scale_base is not None else None)
|
||||
self.register_buffer("scale", scale)
|
||||
|
||||
self._seq_len_cached = 0
|
||||
self._cos_cached = None
|
||||
self._sin_cached = None
|
||||
self._cos_k_cached = None
|
||||
self._sin_k_cached = None
|
||||
|
||||
def _compute_inv_freq(self, device=None):
|
||||
return 1 / (self.base ** (torch.arange(0, self.dim, 2, device=device,
|
||||
dtype=torch.float32) / self.dim))
|
||||
|
||||
|
||||
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# if we're on a new device (possibly due to tracing for instance),
|
||||
# or if we're switching from inference mode to training
|
||||
if (seqlen > self._seq_len_cached or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
or (self.training and self._cos_cached.is_inference())):
|
||||
self._seq_len_cached = seqlen
|
||||
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
||||
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
||||
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
||||
if self.pos_idx_in_fp32:
|
||||
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
||||
t /= self.scaling_factor
|
||||
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
||||
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
||||
# cos & sin output to change significantly.
|
||||
# We want to recompute self.inv_freq if it was not loaded in fp32
|
||||
if self.inv_freq.dtype != torch.float32:
|
||||
inv_freq = self.inv_freq.to(torch.float32)
|
||||
else:
|
||||
inv_freq = self.inv_freq
|
||||
else:
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
t /= self.scaling_factor
|
||||
inv_freq = self.inv_freq
|
||||
# Don't do einsum, it converts fp32 to fp16 under AMP
|
||||
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
freqs = torch.outer(t, inv_freq)
|
||||
if self.scale is None:
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
else:
|
||||
power = ((torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
||||
- seqlen // 2) / self.scale_base)
|
||||
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
||||
# We want the multiplication by scale to happen in fp32
|
||||
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
||||
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
||||
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
||||
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
||||
|
||||
def forward(self, q: torch.Tensor, k: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
q: (batch, seqlen, nheads, headdim)
|
||||
k: (batch, seqlen, nheads, headdim)
|
||||
seqlen_offset: can be used in generation where the qkv being passed in is only the last
|
||||
token in the batch.
|
||||
"""
|
||||
self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype)
|
||||
if self.scale is None:
|
||||
return apply_rotary_emb_func(
|
||||
q, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
|
||||
self.interleaved, True # inplace=True
|
||||
), apply_rotary_emb_func(
|
||||
k, self._cos_cached[seqlen_offset:], self._sin_cached[seqlen_offset:],
|
||||
self.interleaved, True # inplace=True
|
||||
)
|
||||
else:
|
||||
assert False
|
||||
|
||||
class LlamaMLP(nn.Module):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[config.hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
if self.config.pretraining_tp > 1:
|
||||
slice = self.intermediate_size // self.config.pretraining_tp
|
||||
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
||||
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
||||
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
||||
|
||||
gate_proj = torch.cat(
|
||||
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
||||
)
|
||||
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
||||
|
||||
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
||||
down_proj = [
|
||||
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
||||
]
|
||||
down_proj = sum(down_proj)
|
||||
else:
|
||||
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
||||
|
||||
return down_proj
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""
|
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||||
"""
|
||||
batch, slen, _, num_key_value_heads, head_dim = hidden_states.shape
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
hidden_states = hidden_states[:, :, :, :, None, :].expand(batch, slen, 2, num_key_value_heads, n_rep, head_dim)
|
||||
return hidden_states.reshape(batch, slen, 2, num_key_value_heads * n_rep, head_dim)
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.hidden_size // self.num_heads
|
||||
self.num_key_value_heads = config.num_key_value_heads
|
||||
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
|
||||
if (self.head_dim * self.num_heads) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {self.num_heads})."
|
||||
)
|
||||
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
||||
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||||
|
||||
self.register_buffer(
|
||||
"norm_factor",
|
||||
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
||||
persistent=False,
|
||||
)
|
||||
|
||||
if self.config.rope_scaling is None:
|
||||
scaling_factor = 1
|
||||
else:
|
||||
scaling_type = self.config.rope_scaling["type"]
|
||||
scaling_factor = self.config.rope_scaling["factor"]
|
||||
assert scaling_type == 'linear'
|
||||
|
||||
self.rotary_emb = FlashRotaryEmbedding(
|
||||
self.head_dim, base=10000, interleaved=False, scaling_factor=scaling_factor,
|
||||
)
|
||||
|
||||
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
||||
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
is_padded_inputs: Optional[bool] = False,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, h_size = hidden_states.size()
|
||||
|
||||
has_layer_past = past_key_value is not None
|
||||
|
||||
if has_layer_past:
|
||||
past_kv = past_key_value[0]
|
||||
past_len = past_key_value[1]
|
||||
else:
|
||||
past_len = 0
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
||||
query_slices = self.q_proj.weight.split(
|
||||
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
||||
)
|
||||
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||
|
||||
q = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
q = torch.cat(q, dim=-1)
|
||||
|
||||
k = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
k = torch.cat(k, dim=-1)
|
||||
|
||||
v = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
v = torch.cat(v, dim=-1)
|
||||
|
||||
else:
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
|
||||
q = q.view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
k = k.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
v = v.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
||||
|
||||
q, k = self.rotary_emb(q, k, past_len)
|
||||
|
||||
kv = torch.stack([k, v], 2)
|
||||
kv = repeat_kv(kv, self.num_key_value_groups)
|
||||
|
||||
# Cache QKV values
|
||||
if has_layer_past:
|
||||
new_len = past_len+q.size(1)
|
||||
if new_len > past_kv.size(1):
|
||||
past_kv = torch.cat([past_kv, torch.empty(bsz, 256, 2, kv.size(3), kv.size(4), dtype=kv.dtype, device=kv.device)], 1)
|
||||
past_kv[:, past_len:new_len] = kv
|
||||
kv = past_kv[:, :new_len]
|
||||
else:
|
||||
past_kv = kv
|
||||
|
||||
past_key_value = (past_kv, past_len+q.size(1)) if use_cache else None
|
||||
|
||||
if is_padded_inputs:
|
||||
|
||||
# varlen, ignore padding tokens, efficient for large batch with many paddings
|
||||
logger.warning_once("padded")
|
||||
|
||||
assert attention_mask is not None
|
||||
|
||||
unpadded_kv, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(kv, attention_mask)
|
||||
unpadded_q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask[:, -q.size(1):])
|
||||
attn_outputs = flash_attn_varlen_kvpacked_func(
|
||||
unpadded_q, unpadded_kv, cu_seqlens_q, cu_seqlens_k,
|
||||
max_seqlen_q, max_seqlen_k,
|
||||
dropout_p=0.0, softmax_scale=1.0/self.norm_factor,
|
||||
causal=(not has_layer_past), return_attn_probs=output_attentions
|
||||
)
|
||||
|
||||
attn_output = attn_outputs[0] if output_attentions else attn_outputs
|
||||
attn_output = pad_input(
|
||||
attn_output, indices_q, bsz, q_len
|
||||
).reshape(bsz, q_len, h_size)
|
||||
attn_weights = attn_outputs[2] if output_attentions else None
|
||||
|
||||
else:
|
||||
|
||||
# no padding tokens, more efficient
|
||||
|
||||
attn_outputs = flash_attn_kvpacked_func(
|
||||
q, kv, dropout_p=0.0, softmax_scale=1.0/self.norm_factor, causal=(not has_layer_past), return_attn_probs=output_attentions)
|
||||
|
||||
attn_output = attn_outputs[0] if output_attentions else attn_outputs
|
||||
attn_output = attn_output.reshape(bsz, q_len, h_size)
|
||||
attn_weights = attn_outputs[2] if output_attentions else None
|
||||
|
||||
if self.config.pretraining_tp > 1:
|
||||
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
||||
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
||||
else:
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
class LlamaDecoderLayer(nn.Module):
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = LlamaAttention(config=config)
|
||||
self.mlp = LlamaMLP(config)
|
||||
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
is_padded_inputs: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||||
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
"""
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
is_padded_inputs=is_padded_inputs,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (self_attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
LLAMA_START_DOCSTRING, LLAMA_INPUTS_DOCSTRING = "", ""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
||||
LLAMA_START_DOCSTRING,
|
||||
)
|
||||
class LlamaPreTrainedModel(PreTrainedModel):
|
||||
config_class = LlamaConfig
|
||||
base_model_prefix = "model"
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["LlamaDecoderLayer"]
|
||||
_skip_keys_device_placement = "past_key_values"
|
||||
|
||||
def _init_weights(self, module):
|
||||
std = self.config.initializer_range
|
||||
if isinstance(module, nn.Linear):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.Embedding):
|
||||
module.weight.data.normal_(mean=0.0, std=std)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, LlamaModel):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
||||
LLAMA_START_DOCSTRING,
|
||||
)
|
||||
class LlamaModel(LlamaPreTrainedModel):
|
||||
"""
|
||||
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
||||
|
||||
Args:
|
||||
config: LlamaConfig
|
||||
"""
|
||||
|
||||
def __init__(self, config: LlamaConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
||||
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embed_tokens = value
|
||||
|
||||
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
is_padded_inputs: Optional[bool] = False,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
position_ids = None
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = () if use_cache else None
|
||||
|
||||
for idx, decoder_layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
|
||||
def create_custom_forward(module):
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, output_attentions, None)
|
||||
|
||||
return custom_forward
|
||||
|
||||
layer_outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(decoder_layer),
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
None,
|
||||
is_padded_inputs
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
is_padded_inputs=is_padded_inputs,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class LlamaForCausalLM(LlamaPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = LlamaModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embed_tokens
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embed_tokens = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
is_padded_inputs: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
is_padded_inputs = ((attention_mask is not None) and (not attention_mask.all().item()))
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs: "CausalLMOutputWithPast" = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
is_padded_inputs=is_padded_inputs,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if self.config.pretraining_tp > 1:
|
||||
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
||||
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
||||
logits = torch.cat(logits, dim=-1)
|
||||
else:
|
||||
logits = self.lm_head(hidden_states)
|
||||
logits = logits.float()
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"position_ids": position_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
"is_padded_inputs": ((attention_mask is not None) and (not attention_mask.all().item()))
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
||||
)
|
||||
return reordered_past
|
|
@ -206,9 +206,6 @@ def get_template_and_fix_tokenizer(
|
|||
name: str,
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
) -> Template:
|
||||
template = templates.get(name, None)
|
||||
assert template is not None, "Template {} does not exist.".format(name)
|
||||
|
||||
if tokenizer.eos_token_id is None:
|
||||
tokenizer.eos_token = "<|endoftext|>"
|
||||
logger.info("Add eos token: {}".format(tokenizer.eos_token))
|
||||
|
@ -217,6 +214,11 @@ def get_template_and_fix_tokenizer(
|
|||
tokenizer.pad_token = tokenizer.eos_token
|
||||
logger.info("Add pad token: {}".format(tokenizer.pad_token))
|
||||
|
||||
if name is None:
|
||||
return None
|
||||
|
||||
template = templates.get(name, None)
|
||||
assert template is not None, "Template {} does not exist.".format(name)
|
||||
tokenizer.add_special_tokens(
|
||||
dict(additional_special_tokens=template.stop_words),
|
||||
replace_additional_special_tokens=False
|
||||
|
|
|
@ -43,6 +43,10 @@ class ModelArguments:
|
|||
default=None,
|
||||
metadata={"help": "Adopt scaled rotary positional embeddings."}
|
||||
)
|
||||
flash_attn: Optional[bool] = field(
|
||||
default=False,
|
||||
metadata={"help": "Enable flash attention for faster training."}
|
||||
)
|
||||
checkpoint_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
|
||||
|
|
|
@ -4,6 +4,7 @@ import torch
|
|||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Literal, Optional, Tuple
|
||||
|
||||
import transformers
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForCausalLM,
|
||||
|
@ -84,7 +85,8 @@ def load_model_and_tokenizer(
|
|||
|
||||
config = AutoConfig.from_pretrained(model_to_load, **config_kwargs)
|
||||
|
||||
if is_trainable and hasattr(config, "fp16") and hasattr(config, "bf16"): # fix Qwen config
|
||||
# Fix config (for Qwen)
|
||||
if is_trainable and hasattr(config, "fp16") and hasattr(config, "bf16"):
|
||||
if model_args.compute_dtype == torch.bfloat16:
|
||||
setattr(config, "bf16", True)
|
||||
else:
|
||||
|
@ -105,6 +107,7 @@ def load_model_and_tokenizer(
|
|||
|
||||
if is_trainable:
|
||||
if model_args.rope_scaling == "dynamic":
|
||||
assert not model_args.flash_attn, "Flash attention does not support dynamic rope scaling."
|
||||
logger.warning(
|
||||
"Dynamic NTK may not work well with fine-tuning. "
|
||||
"See: https://github.com/huggingface/transformers/pull/24653"
|
||||
|
@ -127,6 +130,15 @@ def load_model_and_tokenizer(
|
|||
else:
|
||||
logger.warning("Current model does not support RoPE scaling.")
|
||||
|
||||
# Set flash attention
|
||||
if model_args.flash_attn and getattr(config, "model_type", None) == "llama":
|
||||
from llmtuner.extras.models.flash_llama import LlamaForCausalLM
|
||||
transformers.models.llama.modeling_llama.LlamaForCausalLM = LlamaForCausalLM
|
||||
if not hasattr(config, "num_key_value_heads"):
|
||||
setattr(config, "num_key_value_heads", getattr(config, "num_attention_heads"))
|
||||
if getattr(config, "pretraining_tp", 1) != 1:
|
||||
setattr(config, "pretraining_tp", 1)
|
||||
|
||||
# Quantization configurations (using bitsandbytes library).
|
||||
is_mergeable = True
|
||||
if model_args.quantization_bit is not None:
|
||||
|
|
|
@ -33,6 +33,9 @@ class Seq2SeqPeftTrainer(PeftTrainer):
|
|||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
if self.args.predict_with_generate:
|
||||
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
|
||||
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
|
||||
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
|
||||
if prompt_len > label_len:
|
||||
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
|
||||
|
@ -50,10 +53,8 @@ class Seq2SeqPeftTrainer(PeftTrainer):
|
|||
loss, generated_tokens, labels = super().prediction_step(
|
||||
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
)
|
||||
if generated_tokens is not None:
|
||||
generated_tokens[:, :max(prompt_len, label_len)] = (
|
||||
self.tokenizer.pad_token_id * torch.ones_like(generated_tokens[:, :max(prompt_len, label_len)])
|
||||
)
|
||||
if generated_tokens is not None and self.args.predict_with_generate:
|
||||
generated_tokens[:, :max(prompt_len, label_len)] = self.tokenizer.pad_token_id
|
||||
generated_tokens = generated_tokens.contiguous()
|
||||
|
||||
return loss, generated_tokens, labels
|
||||
|
@ -66,16 +67,8 @@ class Seq2SeqPeftTrainer(PeftTrainer):
|
|||
) -> torch.Tensor:
|
||||
r"""
|
||||
Pads the tensor to the same length as the target tensor.
|
||||
|
||||
Should only be called when predict_with_generate=True.
|
||||
"""
|
||||
if pad_token_id is None:
|
||||
if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"):
|
||||
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
|
||||
pad_token_id = self.tokenizer.pad_token_id
|
||||
else:
|
||||
raise ValueError("PAD token is required.")
|
||||
|
||||
pad_token_id = pad_token_id if pad_token_id is not None else self.tokenizer.pad_token_id
|
||||
padded_tensor = pad_token_id * torch.ones_like(tgt_tensor)
|
||||
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
|
||||
return padded_tensor.contiguous() # in contiguous memory
|
||||
|
|
|
@ -1,36 +0,0 @@
|
|||
# Test Template Encode
|
||||
# Usage: python .\tests\template_encode.py --model_name_and_path D:\llm\chinese-alpaca-2-7b
|
||||
# --template llama2_zh --query 'how are you?'
|
||||
# --history '[[\"Hello!\",\"Hi,I am llama2.\"]]'
|
||||
|
||||
import sys
|
||||
import fire
|
||||
from typing import List, Optional, Tuple
|
||||
from transformers import AutoTokenizer
|
||||
sys.path.append("./src")
|
||||
from llmtuner.extras.template import get_template_and_fix_tokenizer
|
||||
|
||||
|
||||
def encode(
|
||||
model_name_and_path: str,
|
||||
template: str,
|
||||
query: str,
|
||||
resp: Optional[str] = "",
|
||||
history: Optional[List[Tuple[str, str]]] = None,
|
||||
system: Optional[str] = None):
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name_and_path,
|
||||
trust_remote_code=True
|
||||
)
|
||||
|
||||
template = get_template_and_fix_tokenizer(template, tokenizer)
|
||||
|
||||
encoded_pairs = template.encode_multiturn(tokenizer, query, resp, history, system)
|
||||
for prompt_ids, answer_ids in encoded_pairs:
|
||||
print("="*50)
|
||||
print("prompt_ids: {}, answer_ids: {}".format(prompt_ids, answer_ids))
|
||||
print("prompt decode: {}".format(tokenizer.decode(prompt_ids)))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(encode)
|
Loading…
Reference in New Issue