supervised packing with greedy knapsack algorithm
This commit is contained in:
parent
c4f50865ad
commit
f9db439cb7
|
@ -1,3 +1,5 @@
|
|||
import itertools
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
|
@ -16,6 +18,52 @@ if TYPE_CHECKING:
|
|||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def binary_search_for_fit(numbers, capacity):
|
||||
"""
|
||||
Perform binary search to find the largest number that fits into the knapsack with the given capacity.
|
||||
"""
|
||||
left, right = 0, len(numbers) - 1
|
||||
result = -1 # If no number fits, return -1
|
||||
|
||||
while left <= right:
|
||||
mid = (left + right) // 2
|
||||
if numbers[mid] <= capacity:
|
||||
result = mid
|
||||
left = mid + 1
|
||||
else:
|
||||
right = mid - 1
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def efficient_greedy_knapsack(numbers, capacity):
|
||||
"""
|
||||
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||
"""
|
||||
numbers.sort() # Sort numbers in ascending order for binary search
|
||||
knapsacks = []
|
||||
|
||||
while numbers:
|
||||
current_knapsack = []
|
||||
remaining_capacity = capacity
|
||||
|
||||
while True:
|
||||
index = binary_search_for_fit(numbers, remaining_capacity)
|
||||
if index == -1:
|
||||
break # No more numbers fit in this knapsack
|
||||
|
||||
# Add the found number to the knapsack and update the remaining capacity
|
||||
current_knapsack.append(numbers[index])
|
||||
remaining_capacity -= numbers[index]
|
||||
|
||||
# Remove the number from the list
|
||||
numbers.pop(index)
|
||||
|
||||
knapsacks.append(current_knapsack)
|
||||
|
||||
return knapsacks
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
|
@ -115,16 +163,50 @@ def preprocess_packed_supervised_dataset(
|
|||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
total_length = len(input_ids)
|
||||
block_size = data_args.cutoff_len
|
||||
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# split by chunks of cutoff_len
|
||||
for i in range(0, total_length, block_size):
|
||||
if not all(label == IGNORE_INDEX for label in labels[i : i + block_size]):
|
||||
model_inputs["input_ids"].append(input_ids[i : i + block_size])
|
||||
model_inputs["attention_mask"].append([1] * block_size)
|
||||
model_inputs["labels"].append(labels[i : i + block_size])
|
||||
# prepare for packing
|
||||
lengths = []
|
||||
length2examples_idx = defaultdict(list)
|
||||
for idx, example in enumerate(input_ids):
|
||||
length = len(example)
|
||||
if length > data_args.cutoff_len:
|
||||
logger.warning("Dropped example with length {} > cutoff_len {}".format(length, data_args.cutoff_len))
|
||||
continue
|
||||
lengths.append(length)
|
||||
length2examples_idx[length].append(idx)
|
||||
|
||||
knapsacks = efficient_greedy_knapsack(lengths, data_args.cutoff_len)
|
||||
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids = []
|
||||
packed_labels = []
|
||||
|
||||
total_length = 0
|
||||
for length in knapsack:
|
||||
total_length += length
|
||||
idx = length2examples_idx[length].pop()
|
||||
packed_input_ids.append(input_ids[idx])
|
||||
packed_labels.append(labels[idx])
|
||||
|
||||
# padding to cutoff_len
|
||||
if total_length < data_args.cutoff_len:
|
||||
pad_length = data_args.cutoff_len - total_length
|
||||
packed_input_ids.append([tokenizer.eos_token_id] * pad_length)
|
||||
packed_labels.append([IGNORE_INDEX] * pad_length)
|
||||
elif total_length == data_args.cutoff_len:
|
||||
pad_length = 0
|
||||
else:
|
||||
logger.warning(
|
||||
"Dropped packed example with total length {} > cutoff_len {}".format(
|
||||
total_length, data_args.cutoff_len
|
||||
)
|
||||
)
|
||||
continue
|
||||
|
||||
# concat all
|
||||
model_inputs["input_ids"].append(list(itertools.chain(*packed_input_ids)))
|
||||
|
||||
model_inputs["labels"].append(list(itertools.chain(*packed_labels)))
|
||||
model_inputs["attention_mask"].append([1] * total_length + [0] * pad_length)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
|
Loading…
Reference in New Issue