supervised packing with greedy knapsack algorithm
This commit is contained in:
parent
c4f50865ad
commit
f9db439cb7
|
@ -1,3 +1,5 @@
|
||||||
|
import itertools
|
||||||
|
from collections import defaultdict
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
|
@ -16,6 +18,52 @@ if TYPE_CHECKING:
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def binary_search_for_fit(numbers, capacity):
|
||||||
|
"""
|
||||||
|
Perform binary search to find the largest number that fits into the knapsack with the given capacity.
|
||||||
|
"""
|
||||||
|
left, right = 0, len(numbers) - 1
|
||||||
|
result = -1 # If no number fits, return -1
|
||||||
|
|
||||||
|
while left <= right:
|
||||||
|
mid = (left + right) // 2
|
||||||
|
if numbers[mid] <= capacity:
|
||||||
|
result = mid
|
||||||
|
left = mid + 1
|
||||||
|
else:
|
||||||
|
right = mid - 1
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def efficient_greedy_knapsack(numbers, capacity):
|
||||||
|
"""
|
||||||
|
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||||
|
"""
|
||||||
|
numbers.sort() # Sort numbers in ascending order for binary search
|
||||||
|
knapsacks = []
|
||||||
|
|
||||||
|
while numbers:
|
||||||
|
current_knapsack = []
|
||||||
|
remaining_capacity = capacity
|
||||||
|
|
||||||
|
while True:
|
||||||
|
index = binary_search_for_fit(numbers, remaining_capacity)
|
||||||
|
if index == -1:
|
||||||
|
break # No more numbers fit in this knapsack
|
||||||
|
|
||||||
|
# Add the found number to the knapsack and update the remaining capacity
|
||||||
|
current_knapsack.append(numbers[index])
|
||||||
|
remaining_capacity -= numbers[index]
|
||||||
|
|
||||||
|
# Remove the number from the list
|
||||||
|
numbers.pop(index)
|
||||||
|
|
||||||
|
knapsacks.append(current_knapsack)
|
||||||
|
|
||||||
|
return knapsacks
|
||||||
|
|
||||||
|
|
||||||
def preprocess_supervised_dataset(
|
def preprocess_supervised_dataset(
|
||||||
examples: Dict[str, List[Any]],
|
examples: Dict[str, List[Any]],
|
||||||
template: "Template",
|
template: "Template",
|
||||||
|
@ -115,16 +163,50 @@ def preprocess_packed_supervised_dataset(
|
||||||
input_ids += [tokenizer.eos_token_id]
|
input_ids += [tokenizer.eos_token_id]
|
||||||
labels += [tokenizer.eos_token_id]
|
labels += [tokenizer.eos_token_id]
|
||||||
|
|
||||||
total_length = len(input_ids)
|
# prepare for packing
|
||||||
block_size = data_args.cutoff_len
|
lengths = []
|
||||||
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
|
length2examples_idx = defaultdict(list)
|
||||||
total_length = (total_length // block_size) * block_size
|
for idx, example in enumerate(input_ids):
|
||||||
# split by chunks of cutoff_len
|
length = len(example)
|
||||||
for i in range(0, total_length, block_size):
|
if length > data_args.cutoff_len:
|
||||||
if not all(label == IGNORE_INDEX for label in labels[i : i + block_size]):
|
logger.warning("Dropped example with length {} > cutoff_len {}".format(length, data_args.cutoff_len))
|
||||||
model_inputs["input_ids"].append(input_ids[i : i + block_size])
|
continue
|
||||||
model_inputs["attention_mask"].append([1] * block_size)
|
lengths.append(length)
|
||||||
model_inputs["labels"].append(labels[i : i + block_size])
|
length2examples_idx[length].append(idx)
|
||||||
|
|
||||||
|
knapsacks = efficient_greedy_knapsack(lengths, data_args.cutoff_len)
|
||||||
|
|
||||||
|
for knapsack in knapsacks:
|
||||||
|
packed_input_ids = []
|
||||||
|
packed_labels = []
|
||||||
|
|
||||||
|
total_length = 0
|
||||||
|
for length in knapsack:
|
||||||
|
total_length += length
|
||||||
|
idx = length2examples_idx[length].pop()
|
||||||
|
packed_input_ids.append(input_ids[idx])
|
||||||
|
packed_labels.append(labels[idx])
|
||||||
|
|
||||||
|
# padding to cutoff_len
|
||||||
|
if total_length < data_args.cutoff_len:
|
||||||
|
pad_length = data_args.cutoff_len - total_length
|
||||||
|
packed_input_ids.append([tokenizer.eos_token_id] * pad_length)
|
||||||
|
packed_labels.append([IGNORE_INDEX] * pad_length)
|
||||||
|
elif total_length == data_args.cutoff_len:
|
||||||
|
pad_length = 0
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
"Dropped packed example with total length {} > cutoff_len {}".format(
|
||||||
|
total_length, data_args.cutoff_len
|
||||||
|
)
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# concat all
|
||||||
|
model_inputs["input_ids"].append(list(itertools.chain(*packed_input_ids)))
|
||||||
|
|
||||||
|
model_inputs["labels"].append(list(itertools.chain(*packed_labels)))
|
||||||
|
model_inputs["attention_mask"].append([1] * total_length + [0] * pad_length)
|
||||||
|
|
||||||
return model_inputs
|
return model_inputs
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue