import io import json import os from shutil import copyfile from typing import Any, Dict, IO, List, Optional, Tuple import pkg_resources import sentencepiece as spm from pytrie import StringTrie from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {}, "tokenizer_file": {}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {} class CPM9GTokenizer(PreTrainedTokenizer): """ CPM9G 分词器类。用于基于字节对编码的分词。 参数: path (str, 可选): 词汇表文件的路径。 """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file: Optional[str] = None, unk_token: str = "", bos_token: str = "", eos_token: str = "", pad_token: Optional[str] = None, sp_model_kwargs: Optional[Dict[str, Any]] = None, add_bos_token: bool = True, add_eos_token: bool = False, clean_up_tokenization_spaces: bool = False, **kwargs, ): self.sp_model_kwargs = sp_model_kwargs or {} self.vocab_file = vocab_file self.add_bos_token = add_bos_token self.add_eos_token = add_eos_token self.unk_token = unk_token self.bos_token = bos_token self.eos_token = eos_token self.pad_token = pad_token self.byte_list: List[str] = ( [f"<0x0{hex(i).upper()[2:]}>" for i in range(0x10)] + [f"<0x{hex(i).upper()[2:]}>" for i in range(0x10, 0x100)] ) self._special_token_set = set([self.unk_token, self.bos_token, self.eos_token] + self.byte_list) if vocab_file: if 'vocab.txt' not in vocab_file: all_tokens = self.load_vocab(io.FileIO(vocab_file + VOCAB_FILES_NAMES['vocab_file'], "rb")) else: all_tokens = self.load_vocab(io.FileIO(vocab_file, "rb")) else: all_tokens = self.load_vocab(io.FileIO(VOCAB_FILES_NAMES['vocab_file'], "rb")) self.encoder: Dict[str, int] = {} self._special_encoder: Dict[str, int] = {} for token, token_id in all_tokens.items(): if token in self._special_token_set: self._special_encoder[token] = token_id else: self.encoder[token] = token_id self.decoder = {v: k for k, v in self.encoder.items()} self._byte_decoder = {self._special_encoder[token]: i for i, token in enumerate(self.byte_list)} self._max_word_len = max([len(x) for x in self.encoder.keys()]) self._len_word_first = {} for x in self.encoder.keys(): if not x[0] in self._len_word_first: self._len_word_first[x[0]] = 1 if len(x) > self._len_word_first[x[0]]: self._len_word_first[x[0]] = len(x) self.tencoder = StringTrie(self.encoder) super().__init__( bos_token=AddedToken(bos_token, lstrip=False, rstrip=False), eos_token=AddedToken(eos_token, lstrip=False, rstrip=False), unk_token=AddedToken(unk_token, lstrip=False, rstrip=False), pad_token=AddedToken(pad_token, lstrip=False, rstrip=False) if pad_token else None, add_bos_token=add_bos_token, add_eos_token=add_eos_token, sp_model_kwargs=self.sp_model_kwargs, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) def __getstate__(self) -> Dict[str, Any]: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict[str, Any]) -> None: self.__dict__ = d def load_vocab(self, fp: IO[bytes]) -> Dict[str, int]: """ 加载词汇表文件到字典中。 参数: fp (IO[bytes]): 词汇表文件指针。 返回: Dict[str, int]: 词汇表字典。 """ vocab: Dict[str, int] = {} reader = io.TextIOWrapper(fp, encoding="utf-8") for token in reader.readlines(): token = token.strip() if len(token) == 0: continue token = json.loads(token) vocab[token] = len(vocab) return vocab @property def vocab_size(self) -> int: """返回词汇表大小""" return len(self.encoder) + len(self._special_encoder) @property def eos_id(self): return self._special_encoder[self.eos_token] @property def bos_id(self): return self._special_encoder[self.bos_token] @property def unk_id(self): return self._special_encoder[self.unk_token] def get_vocab(self) -> Dict[str, int]: """返回词汇表作为字典""" vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: """返回分词后的字符串""" output_tokens: List[str] = [] st = 0 while st < len(text): piece = self.get_piece(text[st:]) output_tokens.append(piece) st += len(piece) return output_tokens def _convert_token_to_id(self, token: str) -> int: """使用词汇表将标记(字符串)转换为 id""" return self.encoder.get(token, self.unk_id) def _convert_id_to_token(self, index: int) -> str: """使用词汇表将索引(整数)转换为标记(字符串)""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]) -> str: """将标记序列(字符串)转换为单个字符串""" current_sub_tokens: List[str] = [] out_string = "" prev_is_special = False for i, token in enumerate(tokens): if token in self._special_token_set: if not prev_is_special and i != 0: out_string += " " out_string += self.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: """ 保存词汇表和特殊标记文件到目录。 参数: save_directory (str): 要保存词汇表的目录。 返回: Tuple[str]: 保存的文件路径。 """ if not os.path.isdir(save_directory): raise ValueError(f"Vocabulary path ({save_directory}) should be a directory") out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"], ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: fi.write(self.sp_model.serialized_model_proto()) return (out_vocab_file, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ 获取从未添加特殊标记的标记列表中检索到的序列 id。 在使用分词器的 `prepare_for_model` 方法添加特殊标记时调用此方法。 参数: token_ids_0 (List[int]): id 列表。 token_ids_1 (List[int], 可选): 序列对的可选第二 id 列表。 already_has_special_tokens (bool, 可选, 默认值为 False): 标记列表是否已使用模型的特殊标记进行格式化。 返回: List[int]: 一个包含整数(0 或 1)的列表。1 表示特殊标记,0 表示序列标记。 """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True, ) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ 从传递的两个序列创建掩码,用于序列对分类任务。 参数: token_ids_0 (List[int]): id 列表。 token_ids_1 (List[int], 可选): 序列对的可选第二 id 列表。 返回: List[int]: 根据给定序列的标记类型 id 列表。 """ bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) if token_ids_1 is not None: output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) return output def get_piece(self, text: str) -> str: """ 获取文本中的分词片段。 参数: text (str): 输入文本。 返回: str: 分词片段。 """ if text[0] in self._len_word_first: text = text[: self._len_word_first[text[0]]] len_text = len(text) for i in range(len(text)): sub = text[: len_text - i] if sub in self.encoder: return sub return text[0] def encode(self, text: str, add_special_tokens: bool) -> List[int]: """ 将文本编码为 ID 列表。 参数: text (str): 输入文本。 返回: List[int]: 编码后的 ID 列表。 """ #if len(text) > 20480: # return [0 for _ in range(20480)] ret = [] for x in self._tokenize(text): if x in self.encoder: ret.append(self.encoder[x]) else: ret.extend(self._encode_unicode(x)) return ret def decode_all(self, tokens: List[int]): """Decode ids into a string.""" ret = [] st = 0 while st < len(tokens): if tokens[st] in self.decoder: ret.append(self.decoder[tokens[st]]) st += 1 elif tokens[st] in self._byte_decoder: if ( st + 3 < len(tokens) and tokens[st + 1] in self._byte_decoder and tokens[st + 2] in self._byte_decoder and tokens[st + 3] in self._byte_decoder ): first_id = self._byte_decoder[tokens[st]] plane_id = self._byte_decoder[tokens[st + 1]] row_id = self._byte_decoder[tokens[st + 2]] cell_id = self._byte_decoder[tokens[st + 3]] ret.append( int.to_bytes(first_id << 24 | plane_id << 16 | row_id << 8 | cell_id, 4, "big").decode("utf-8") ) st += 4 elif ( st + 2 < len(tokens) and tokens[st + 1] in self._byte_decoder and tokens[st + 2] in self._byte_decoder ): plane_id = self._byte_decoder[tokens[st]] row_id = self._byte_decoder[tokens[st + 1]] cell_id = self._byte_decoder[tokens[st + 2]] ret.append(int.to_bytes(plane_id << 16 | row_id << 8 | cell_id, 3, "big").decode("utf-8")) st += 3 elif st + 1 < len(tokens) and tokens[st + 1] in self._byte_decoder: row_id = self._byte_decoder[tokens[st]] cell_id = self._byte_decoder[tokens[st + 1]] ret.append(int.to_bytes(row_id << 8 | cell_id, 2, "big").decode("utf-8")) st += 2 else: cell_id = self._byte_decoder[tokens[st]] ret.append(int.to_bytes(cell_id, 1, "big").decode("utf-8")) st += 1 elif tokens[st] == self.eos_id: ret.append(self.eos_token) st += 1 elif tokens[st] == self.bos_id: ret.append(self.bos_token) st += 1 else: ret.append(self.unk_token) st += 1 return "".join(ret) def decode(self, tokens: List[int], skip_special_tokens: bool) -> str: """ 将 ID 列表解码为字符串。 参数: tokens (List[int]): ID 列表。 返回: str: 解码后的字符串。 """ ret = [] st = 0 while st < len(tokens): if tokens[st] in self._byte_decoder: if ( st + 3 < len(tokens) and tokens[st + 1] in self._byte_decoder and tokens[st + 2] in self._byte_decoder and tokens[st + 3] in self._byte_decoder ): first_id = self._byte_decoder[tokens[st]] plane_id = self._byte_decoder[tokens[st + 1]] row_id = self._byte_decoder[tokens[st + 2]] cell_id = self._byte_decoder[tokens[st + 3]] ret.append( int.to_bytes(first_id << 24 | plane_id << 16 | row_id << 8 | cell_id, 4, "big").decode("utf-8") ) st += 4 elif ( st + 2 < len(tokens) and tokens[st + 1] in self._byte_decoder and tokens[st + 2] in self._byte_decoder ): plane_id = self._byte_decoder[tokens[st]] row_id = self._byte_decoder[tokens[st + 1]] cell_id = self._byte_decoder[tokens[st + 2]] ret.append(int.to_bytes(plane_id << 16 | row_id << 8 | cell_id, 3, "big").decode("utf-8")) st += 3 elif st + 1 < len(tokens) and tokens[st + 1] in self._byte_decoder: row_id = self._byte_decoder[tokens[st]] cell_id = self._byte_decoder[tokens[st + 1]] ret.append(int.to_bytes(row_id << 8 | cell_id, 2, "big").decode("utf-8")) st += 2 else: cell_id = self._byte_decoder[tokens[st]] ret.append(int.to_bytes(cell_id, 1, "big").decode("utf-8")) st += 1 elif tokens[st] == self.eos_id: ret.append(self.eos_token) st += 1 elif tokens[st] == self.bos_id: ret.append(self.bos_token) st += 1 else: ret.append(tokens[st]) st += 1 #else: # ret.append(self.unk_token) # st += 1 return ''.join([str(item) for item in ret]) def _encode_unicode(self, token: str) -> List[int]: """ 将 Unicode 编码包装到一个辅助函数中。 参数: token (str): 要编码的标记。 返回: List[int]: 编码后的 ID 列表。 """ ids = [] utf8_id = token.encode("utf-8") for _id in utf8_id: ids.append(self._special_encoder[self.byte_list[_id]]) return ids def next_token(self, text: str) -> Tuple[str, List[int]]: """ 快速获取下一个匹配的标记。 参数: text (str): 输入文本。 返回: Tuple[str, List[int]]: 匹配的标记及其 ID 列表。 """ token, token_id = self.tencoder.longest_prefix_item(text, (None, None)) if token is None: token = text[0] token_ids = self._encode_unicode(token) else: token_ids = [token_id] return token, token_ids