We provide diverse examples about fine-tuning LLMs. ``` examples/ ├── lora_single_gpu/ │ ├── pretrain.sh: Do pre-training │ ├── sft.sh: Do supervised fine-tuning │ ├── reward.sh: Do reward modeling │ ├── ppo.sh: Do PPO training │ ├── dpo.sh: Do DPO training │ ├── orpo.sh: Do ORPO training │ ├── prepare.sh: Save tokenized dataset │ └── predict.sh: Do batch predict ├── qlora_single_gpu/ │ ├── bitsandbytes.sh: Fine-tune 4/8-bit BNB models │ ├── gptq.sh: Fine-tune 4/8-bit GPTQ models │ ├── awq.sh: Fine-tune 4-bit AWQ models │ └── aqlm.sh: Fine-tune 2-bit AQLM models ├── lora_multi_gpu/ │ ├── single_node.sh: Fine-tune model with Accelerate on single node │ └── multi_node.sh: Fine-tune model with Accelerate on multiple nodes ├── full_multi_gpu/ │ ├── single_node.sh: Fine-tune model with DeepSpeed on single node │ └── multi_node.sh: Fine-tune model with DeepSpeed on multiple nodes ├── merge_lora/ │ ├── merge.sh: Merge LoRA weights into the pre-trained models │ └── quantize.sh: Quantize fine-tuned model with AutoGPTQ ├── inference/ │ ├── cli_demo.sh: Launch a command line interface │ ├── api_demo.sh: Launch an OpenAI-style API │ ├── web_demo.sh: Launch a web interface │ └── evaluate.sh: Evaluate model on the MMLU benchmark └── extras/ ├── galore/ │ └── sft.sh: Fine-tune model with GaLore ├── loraplus/ │ └── sft.sh: Fine-tune model with LoRA+ ├── llama_pro/ │ ├── expand.sh: Expand layers in the model │ └── sft.sh: Fine-tune expanded model └── fsdp_qlora/ └── sft.sh: Fine-tune quantized model with FSDP ```