# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random from typing import Dict, List import pytest from datasets import load_dataset from transformers import AutoTokenizer from llamafactory.extras.constants import IGNORE_INDEX from llamafactory.train.test_utils import load_train_dataset DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data") TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") TRAIN_ARGS = { "model_name_or_path": TINY_LLAMA, "stage": "rm", "do_train": True, "finetuning_type": "full", "dataset": "dpo_en_demo", "dataset_dir": "REMOTE:" + DEMO_DATA, "template": "llama3", "cutoff_len": 8192, "overwrite_cache": True, "output_dir": "dummy_dir", "overwrite_output_dir": True, "fp16": True, } def _convert_sharegpt_to_openai(messages: List[Dict[str, str]]) -> List[Dict[str, str]]: role_mapping = {"human": "user", "gpt": "assistant", "system": "system"} new_messages = [] for message in messages: new_messages.append({"role": role_mapping[message["from"]], "content": message["value"]}) return new_messages @pytest.mark.parametrize("num_samples", [16]) def test_pairwise_data(num_samples: int): train_dataset = load_train_dataset(**TRAIN_ARGS) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) original_data = load_dataset(DEMO_DATA, name="dpo_en_demo", split="train") indexes = random.choices(range(len(original_data)), k=num_samples) for index in indexes: chosen_messages = original_data["conversations"][index] + [original_data["chosen"][index]] rejected_messages = original_data["conversations"][index] + [original_data["rejected"][index]] chosen_messages = _convert_sharegpt_to_openai(chosen_messages) rejected_messages = _convert_sharegpt_to_openai(rejected_messages) ref_chosen_input_ids = ref_tokenizer.apply_chat_template(chosen_messages) chosen_prompt_len = len(ref_tokenizer.apply_chat_template(chosen_messages[:-1], add_generation_prompt=True)) ref_chosen_labels = [IGNORE_INDEX] * chosen_prompt_len + ref_chosen_input_ids[chosen_prompt_len:] ref_rejected_input_ids = ref_tokenizer.apply_chat_template(rejected_messages) rejected_prompt_len = len( ref_tokenizer.apply_chat_template(rejected_messages[:-1], add_generation_prompt=True) ) ref_rejected_labels = [IGNORE_INDEX] * rejected_prompt_len + ref_rejected_input_ids[rejected_prompt_len:] assert train_dataset["chosen_input_ids"][index] == ref_chosen_input_ids assert train_dataset["chosen_labels"][index] == ref_chosen_labels assert train_dataset["rejected_input_ids"][index] == ref_rejected_input_ids assert train_dataset["rejected_labels"][index] == ref_rejected_labels