# coding=utf-8 # Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by HuggingFace's PEFT library. # https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import TYPE_CHECKING, Optional import fire import torch import torch.nn as nn from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model from transformers import AutoModelForCausalLM, AutoTokenizer if TYPE_CHECKING: from transformers import PreTrainedModel class Shell(nn.Module): def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None): super().__init__() self.weight = nn.Parameter(weight, requires_grad=False) if bias is not None: self.bias = nn.Parameter(bias, requires_grad=False) def unwrap_model(model: nn.Module, pattern=".base_layer") -> None: for name in {k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k}: parent_name = ".".join(name.split(".")[:-1]) child_name = name.split(".")[-1] parent_module = model.get_submodule(parent_name) child_module = getattr(parent_module, child_name) base_layer = getattr(child_module, "base_layer") weight = getattr(base_layer, "weight", None) bias = getattr(base_layer, "bias", None) setattr(parent_module, child_name, Shell(weight, bias)) print("Model unwrapped.") def quantize_loftq( model_name_or_path: str, save_dir: str, loftq_bits: Optional[int] = 4, loftq_iter: Optional[int] = 1, lora_alpha: Optional[int] = None, lora_rank: Optional[int] = 16, lora_target: Optional[str] = "q_proj,v_proj", save_safetensors: Optional[bool] = False, ): r""" Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ) Usage: python loftq_init.py --model_name_or_path path_to_model --save_dir output_dir """ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto") loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter) lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=True, r=lora_rank, lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2, lora_dropout=0.1, target_modules=[name.strip() for name in lora_target.split(",")], init_lora_weights="loftq", loftq_config=loftq_config, ) # Init LoftQ model lora_model = get_peft_model(model, lora_config) base_model: "PreTrainedModel" = lora_model.get_base_model() # Save LoftQ model setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir) setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True) lora_model.save_pretrained(os.path.join(save_dir, "adapters"), safe_serialization=save_safetensors) # Save base model unwrap_model(base_model) base_model.save_pretrained(save_dir, safe_serialization=save_safetensors) tokenizer.save_pretrained(save_dir) if __name__ == "__main__": fire.Fire(quantize_loftq)