#!/bin/bash run_type="$1" model="$2" gpu_cnt="$3" max_steps="$4" current_datetime=$(date +%Y%m%d%H%M%S) if [ "${run_type}"="lora_sft" ]; then run_name="${run_type}_${model}_${gpu_cnt}_gpu_${max_steps}_step_${current_datetime}" else run_name="${run_type}_${model}_${gpu_cnt}_gpu_${current_datetime}" fi output_dir ="./results/${run_name}" if [ ! -d "$output_dir" ]; then mkdir -p "$output_dir" echo "路径不存在,已创建: $output_dir" else echo "路径已存在: $output_dir" fi echo "${run_type} ${model} ${gpu_cnt} ${max_steps} ${run_name} ${output_dir}" python prepare_yaml_file.py ${run_type} ${model} ${max_steps} ${run_name} ${output_dir} # export USE_MODELSCOPE_HUB=1 # # 0 means not printing gpu status # python gpu_status.py ${output_dir} 0 & # gpu_status_pid=$! # echo "Start recording gpu status " # if [ "${gpu_cnt}"="1" ]; then # ASCEND_RT_VISIBLE_DEVICES=0 llamafactory-cli train ${output_dir}/${run_name}.yml \ # | tee ${output_dir}/log.txt" & # train_pid=$! # echo "Start train" # else # FORCE_TORCHRUN=1 llamafactory-cli train ${output_dir}/${run_name}.yml \ # | tee ${output_dir}/log.txt" & # train_pid=$! # echo "Start train" # fi # wait $train_pid # echo "Train ended" # sleep 90 # kill $gpu_status_pid # echo "Gpu status ended"