134 lines
4.2 KiB
Python
134 lines
4.2 KiB
Python
# coding=utf-8
|
||
# Evaluates fine-tuned models automatically.
|
||
# Usage: python evaluate_zh.py --evalset ceval/ceval-exam:law --split dev --output_file result.json
|
||
# --api_base http://localhost:8000/v1 --task_type choice --n_samples 100
|
||
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
|
||
|
||
|
||
import os
|
||
import fire
|
||
import json
|
||
import openai
|
||
from tqdm import tqdm
|
||
from typing import Literal, Optional
|
||
from datasets import load_dataset
|
||
|
||
|
||
def format_example_choice(examples):
|
||
model_inputs = {"query": [], "label": []}
|
||
task_template = "请从ABCD四个选项中选出正确的选项,仅输出选项序号。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案:"
|
||
for i in range(len(examples["id"])):
|
||
query = task_template.format(
|
||
question=examples["question"][i],
|
||
A=examples["A"][i],
|
||
B=examples["B"][i],
|
||
C=examples["C"][i],
|
||
D=examples["D"][i]
|
||
)
|
||
label = examples["answer"][i]
|
||
model_inputs["query"].append(query)
|
||
model_inputs["label"].append(label)
|
||
return model_inputs
|
||
|
||
|
||
def format_example_cloze(examples):
|
||
model_inputs = {"query": [], "label": []}
|
||
task_template = "请选择正确的答案填空,仅输出正确的选项。\n{question}\n选项:{A}\n{B}\n{C}\n{D}\n答案:"
|
||
for i in range(len(examples["id"])):
|
||
query = task_template.format(
|
||
question=examples["question"][i],
|
||
A=examples["A"][i],
|
||
B=examples["B"][i],
|
||
C=examples["C"][i],
|
||
D=examples["D"][i]
|
||
)
|
||
label = examples[examples["answer"][i]][i]
|
||
model_inputs["query"].append(query)
|
||
model_inputs["label"].append(label)
|
||
return model_inputs
|
||
|
||
|
||
def format_example_openqa(examples):
|
||
model_inputs = {"query": [], "label": []}
|
||
task_template = "回答以下问题:{question}\n答案:"
|
||
for i in range(len(examples["id"])):
|
||
query = task_template.format(question=examples["question"][i])
|
||
label = examples[examples["answer"][i]][i]
|
||
model_inputs["query"].append(query)
|
||
model_inputs["label"].append(label)
|
||
return model_inputs
|
||
|
||
|
||
TASK_DICT = {
|
||
"choice": format_example_choice,
|
||
"cloze": format_example_cloze,
|
||
"openqa": format_example_openqa
|
||
}
|
||
|
||
|
||
EXT2TYPE = {
|
||
"csv": "csv",
|
||
"json": "json",
|
||
"jsonl": "json"
|
||
}
|
||
|
||
|
||
def evaluate(
|
||
evalset: str,
|
||
api_base: str,
|
||
output_file: str,
|
||
split: Optional[str] = "val",
|
||
task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice",
|
||
n_samples: Optional[int] = 20
|
||
):
|
||
|
||
openai.api_base = api_base
|
||
openai.api_key = "none"
|
||
|
||
if os.path.isfile(evalset):
|
||
dataset = load_dataset(EXT2TYPE[evalset.split(".")[-1]], data_files=evalset)["train"]
|
||
elif ":" in evalset:
|
||
evalset, subset = evalset.split(":")
|
||
dataset = load_dataset(evalset, subset, split=split)
|
||
else:
|
||
dataset = load_dataset(evalset, split=split)
|
||
|
||
n_samples = min(len(dataset), n_samples)
|
||
|
||
dataset = dataset.map(TASK_DICT[task_type], batched=True)
|
||
dataset = dataset.select(range(n_samples))
|
||
|
||
n_correct = 0
|
||
predictions = []
|
||
for example in tqdm(dataset):
|
||
query, label = example["query"], example["label"]
|
||
predict = openai.ChatCompletion.create(
|
||
model="default",
|
||
messages=[{"role": "user", "content": query}],
|
||
temperature=0.01,
|
||
top_p=0.01,
|
||
max_new_tokens=20
|
||
).choices[0].message.content
|
||
|
||
if task_type == "choice" and predict[0].lower() == label[0].lower():
|
||
n_correct += 1
|
||
if task_type == "cloze" and label in [predict[:len(label)], predict[-len(label):]]:
|
||
n_correct += 1
|
||
if task_type == "openqa" and label in predict:
|
||
n_correct += 1
|
||
|
||
predictions.append({
|
||
"query": query,
|
||
"label": label,
|
||
"predict": predict
|
||
})
|
||
|
||
print("Result: {}/{}\nAccuracy: {:.2f}%".format(n_correct, n_samples, n_correct / n_samples * 100))
|
||
|
||
with open(output_file, "w", encoding="utf-8") as f:
|
||
json.dump(predictions, f, indent=2, ensure_ascii=False)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
fire.Fire(evaluate)
|