LLaMA-Factory-310P3/docker/docker-npu/Dockerfile

48 lines
1.5 KiB
Docker

# Use the Ubuntu 22.04 image with CANN 8.0.rc1
# More versions can be found at https://hub.docker.com/r/ascendai/cann/tags
# FROM ascendai/cann:8.0.rc1-910-ubuntu22.04-py3.8
FROM ascendai/cann:8.0.rc1-310p-ubuntu22.04-py3.8
# FROM ascendai/cann:8.0.rc1-910-openeuler22.03-py3.8
# FROM ascendai/cann:8.0.rc1-910b-openeuler22.03-py3.8
# Define environments
ENV DEBIAN_FRONTEND=noninteractive
# Define installation arguments
ARG INSTALL_DEEPSPEED=false
ARG PIP_INDEX=https://pypi.tuna.tsinghua.edu.cn/simple
ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu
# Set the working directory
WORKDIR /app
RUN apt-get update && apt-get install -y git
# Install the requirements
COPY requirements.txt /app
RUN pip config set global.index-url "$PIP_INDEX" && \
pip config set global.extra-index-url "$TORCH_INDEX" && \
python -m pip install --upgrade pip && \
python -m pip install -r requirements.txt
# Copy the rest of the application into the image
COPY . /app
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="torch-npu,metrics"; \
if [ "$INSTALL_DEEPSPEED" == "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
pip install -e ".[$EXTRA_PACKAGES]"
# Set up volumes
VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output", "/app/LLaMA-Factory-310P3" ]
# Expose port 7860 for the LLaMA Board
ENV GRADIO_SERVER_PORT 7860
EXPOSE 7860
# Expose port 8000 for the API service
ENV API_PORT 8000
EXPOSE 8000