264 lines
9.4 KiB
Markdown
264 lines
9.4 KiB
Markdown
# LLaMA Efficient Tuning
|
|
|
|
![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social)
|
|
![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning)
|
|
![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning)
|
|
![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)
|
|
|
|
👋 Join our [WeChat](assets/wechat.jpg).
|
|
|
|
## Changelog
|
|
|
|
[23/06/22] Now we align the [demo API](src/api_demo.py) with the [OpenAI's](https://platform.openai.com/docs/api-reference/chat) format where you can insert the fine-tuned model in arbitrary ChatGPT-based applications.
|
|
|
|
[23/06/15] Now we support training the baichuan-7B model in this repo. Try `--model_name_or_path baichuan-inc/baichuan-7B` and `--lora_target W_pack` arguments to use the baichuan-7B model. If you want to train with RTX3090, use `git checkout baichuan-7b-rtx3090` to switch to the `baichuan-7b-rtx3090` branch and try the `--baichuan_rtx_gpu true` argument. (Other RTX series GPUs can also be tried)
|
|
|
|
[23/06/03] Now we support quantized training and inference (aka [QLoRA](https://github.com/artidoro/qlora)). Try `--quantization_bit 4/8` argument to work with quantized model. (experimental feature)
|
|
|
|
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` and `--lora_target query_key_value` arguments to use the BLOOMZ model.
|
|
|
|
## Supported Models
|
|
|
|
- [LLaMA](https://github.com/facebookresearch/llama) (7B/13B/33B/65B)
|
|
- [BLOOM](https://huggingface.co/bigscience/bloom) & [BLOOMZ](https://huggingface.co/bigscience/bloomz) (560M/1.1B/1.7B/3B/7.1B/176B)
|
|
- [baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) (7B)
|
|
|
|
## Supported Training Approaches
|
|
|
|
- [(Continually) pre-training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)
|
|
- Full-parameter tuning
|
|
- Partial-parameter tuning
|
|
- [LoRA](https://arxiv.org/abs/2106.09685)
|
|
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
|
- [Supervised fine-tuning](https://arxiv.org/abs/2109.01652)
|
|
- Full-parameter tuning
|
|
- Partial-parameter tuning
|
|
- [LoRA](https://arxiv.org/abs/2106.09685)
|
|
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
|
- [RLHF](https://arxiv.org/abs/2203.02155)
|
|
- [LoRA](https://arxiv.org/abs/2106.09685)
|
|
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
|
|
|
## Provided Datasets
|
|
|
|
- For pre-training:
|
|
- [Wiki Demo](data/wiki_demo.txt)
|
|
- For supervised fine-tuning:
|
|
- [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
|
|
- [Stanford Alpaca (Chinese)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
|
- [GPT-4 Generated Data](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
- [BELLE 2M](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
|
|
- [BELLE 1M](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
|
|
- [BELLE 0.5M](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
|
|
- [BELLE Dialogue 0.4M](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
|
|
- [BELLE School Math 0.25M](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
|
|
- [BELLE Multiturn Chat 0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
|
|
- [Guanaco Dataset](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
|
|
- [Firefly 1.1M](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
|
|
- [CodeAlpaca 20k](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
|
|
- [Alpaca CoT](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
|
|
- [Web QA (Chinese)](https://huggingface.co/datasets/suolyer/webqa)
|
|
- [UltraChat](https://github.com/thunlp/UltraChat)
|
|
- For reward model training:
|
|
- [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
|
- [GPT-4 Generated Data](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
- [GPT-4 Generated Data (Chinese)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
|
|
|
|
Please refer to [data/README.md](data/README.md) for details.
|
|
|
|
Some datasets require confirmation before using them, so we recommend logging in with your HuggingFace account using these commands.
|
|
|
|
```bash
|
|
pip install --upgrade huggingface_hub
|
|
huggingface-cli login
|
|
```
|
|
|
|
## Requirement
|
|
|
|
- Python 3.8+ and PyTorch 1.13.1+
|
|
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
|
|
- jieba, rouge_chinese and nltk (used at evaluation)
|
|
- gradio and mdtex2html (used in web_demo.py)
|
|
- uvicorn and fastapi (used in api_demo.py)
|
|
|
|
And **powerful GPUs**!
|
|
|
|
## Getting Started
|
|
|
|
### Data Preparation (optional)
|
|
|
|
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset.
|
|
|
|
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`.
|
|
|
|
### Dependence Installation (optional)
|
|
|
|
```bash
|
|
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
|
|
conda create -n llama_etuning python=3.10
|
|
conda activate llama_etuning
|
|
cd LLaMA-Efficient-Tuning
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
### LLaMA Weights Preparation (optional)
|
|
|
|
1. Download the weights of the LLaMA models.
|
|
2. Convert them to HF format using the following command.
|
|
|
|
```bash
|
|
python -m transformers.models.llama.convert_llama_weights_to_hf \
|
|
--input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model
|
|
```
|
|
|
|
### (Continually) Pre-Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_pt.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset wiki_demo \
|
|
--finetuning_type lora \
|
|
--output_dir path_to_pt_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Supervised Fine-Tuning
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--finetuning_type lora \
|
|
--output_dir path_to_sft_checkpoint \
|
|
--overwrite_cache \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 5e-5 \
|
|
--num_train_epochs 3.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### Reward Model Training
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_rm.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset comparison_gpt4_en \
|
|
--finetuning_type lora \
|
|
--output_dir path_to_rm_checkpoint \
|
|
--per_device_train_batch_size 4 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--plot_loss \
|
|
--fp16
|
|
```
|
|
|
|
### PPO Training (RLHF)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_ppo.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_train \
|
|
--dataset alpaca_gpt4_en \
|
|
--finetuning_type lora \
|
|
--checkpoint_dir path_to_sft_checkpoint \
|
|
--reward_model path_to_rm_checkpoint \
|
|
--output_dir path_to_ppo_checkpoint \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 4 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_steps 10 \
|
|
--save_steps 1000 \
|
|
--learning_rate 1e-5 \
|
|
--num_train_epochs 1.0 \
|
|
--resume_lora_training False \
|
|
--plot_loss
|
|
```
|
|
|
|
### Distributed Training
|
|
|
|
```bash
|
|
accelerate config # configure the environment
|
|
accelerate launch src/train_XX.py # arguments (same as above)
|
|
```
|
|
|
|
### Evaluation (BLEU and ROUGE_CHINESE)
|
|
|
|
```bash
|
|
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--do_eval \
|
|
--dataset alpaca_gpt4_en \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_eval_result \
|
|
--per_device_eval_batch_size 8 \
|
|
--max_samples 50 \
|
|
--predict_with_generate
|
|
```
|
|
|
|
We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
|
|
|
|
### API / CLI / Web Demo
|
|
|
|
```bash
|
|
python src/xxx_demo.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--checkpoint_dir path_to_checkpoint
|
|
```
|
|
|
|
### Export model
|
|
|
|
```bash
|
|
python src/export_model.py \
|
|
--model_name_or_path path_to_your_model \
|
|
--checkpoint_dir path_to_checkpoint \
|
|
--output_dir path_to_export
|
|
```
|
|
|
|
## License
|
|
|
|
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
|
|
|
Please follow the [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) to use the LLaMA models.
|
|
|
|
Please follow the [RAIL License](https://huggingface.co/spaces/bigscience/license) to use the BLOOM & BLOOMZ models.
|
|
|
|
Please follow the [baichuan-7B License](https://huggingface.co/baichuan-inc/baichuan-7B/resolve/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) to use the baichuan-7B model.
|
|
|
|
## Citation
|
|
|
|
If this work is helpful, please cite as:
|
|
|
|
```bibtex
|
|
@Misc{llama-efficient-tuning,
|
|
title = {LLaMA Efficient Tuning},
|
|
author = {hiyouga},
|
|
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
|
|
year = {2023}
|
|
}
|
|
```
|
|
|
|
## Acknowledgement
|
|
|
|
This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models.
|