cae4737907 | ||
---|---|---|
.. | ||
accelerate | ||
deepspeed | ||
extras | ||
full_multi_gpu | ||
inference | ||
lora_multi_gpu | ||
lora_multi_npu | ||
lora_single_gpu | ||
merge_lora | ||
qlora_single_gpu | ||
README.md | ||
README_zh.md |
README.md
We provide diverse examples about fine-tuning LLMs.
Make sure to execute these commands in the LLaMA-Factory
directory.
Table of Contents
- LoRA Fine-Tuning on A Single GPU
- QLoRA Fine-Tuning on a Single GPU
- LoRA Fine-Tuning on Multiple GPUs
- LoRA Fine-Tuning on Multiple NPUs
- Full-Parameter Fine-Tuning on Multiple GPUs
- Merging LoRA Adapters and Quantization
- Inferring LoRA Fine-Tuned Models
- Extras
Examples
LoRA Fine-Tuning on A Single GPU
(Continuous) Pre-Training
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
Supervised Fine-Tuning
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
Multimodal Supervised Fine-Tuning
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
Reward Modeling
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
PPO Training
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
DPO/ORPO/SimPO Training
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
KTO Training
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
Preprocess Dataset
It is useful for large dataset, use tokenized_path
in config to load the preprocessed dataset.
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
Evaluating on MMLU/CMMLU/C-Eval Benchmarks
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
Batch Predicting and Computing BLEU and ROUGE Scores
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
QLoRA Fine-Tuning on a Single GPU
Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
Supervised Fine-Tuning with 4-bit AWQ Quantization
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
Supervised Fine-Tuning with 2-bit AQLM Quantization
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
LoRA Fine-Tuning on Multiple GPUs
Supervised Fine-Tuning on Single Node
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
Supervised Fine-Tuning on Multiple Nodes
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
LoRA Fine-Tuning on Multiple NPUs
Supervised Fine-Tuning with DeepSpeed ZeRO-0
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
Full-Parameter Fine-Tuning on Multiple GPUs
Supervised Fine-Tuning on Single Node
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
Supervised Fine-Tuning on Multiple Nodes
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
Batch Predicting and Computing BLEU and ROUGE Scores
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
Merging LoRA Adapters and Quantization
Merge LoRA Adapters
Note: DO NOT use quantized model or quantization_bit
when merging LoRA adapters.
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
Quantizing Model using AutoGPTQ
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
Inferring LoRA Fine-Tuned Models
Use CUDA_VISIBLE_DEVICES=0,1
to infer models on multiple devices.
Use CLI
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
Use Web UI
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
Launch OpenAI-style API
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
Extras
Full-Parameter Fine-Tuning using GaLore
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
Full-Parameter Fine-Tuning using BAdam
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
LoRA+ Fine-Tuning
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
Mixture-of-Depths Fine-Tuning
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
LLaMA-Pro Fine-Tuning
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
FSDP+QLoRA Fine-Tuning
bash examples/extras/fsdp_qlora/single_node.sh