105 lines
4.3 KiB
Python
105 lines
4.3 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import random
|
|
|
|
import pytest
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer
|
|
|
|
from llamafactory.extras.constants import IGNORE_INDEX
|
|
from llamafactory.train.test_utils import load_train_dataset
|
|
|
|
|
|
DEMO_DATA = os.environ.get("DEMO_DATA", "llamafactory/demo_data")
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
TINY_DATA = os.environ.get("TINY_DATA", "llamafactory/tiny-supervised-dataset")
|
|
|
|
TRAIN_ARGS = {
|
|
"model_name_or_path": TINY_LLAMA,
|
|
"stage": "sft",
|
|
"do_train": True,
|
|
"finetuning_type": "full",
|
|
"template": "llama3",
|
|
"cutoff_len": 8192,
|
|
"overwrite_cache": True,
|
|
"output_dir": "dummy_dir",
|
|
"overwrite_output_dir": True,
|
|
"fp16": True,
|
|
}
|
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16])
|
|
def test_supervised_single_turn(num_samples: int):
|
|
train_dataset = load_train_dataset(dataset_dir="ONLINE", dataset=TINY_DATA, **TRAIN_ARGS)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
original_data = load_dataset(TINY_DATA, split="train")
|
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
|
for index in indexes:
|
|
prompt = original_data["instruction"][index]
|
|
if original_data["input"][index]:
|
|
prompt += "\n" + original_data["input"][index]
|
|
|
|
messages = [
|
|
{"role": "user", "content": prompt},
|
|
{"role": "assistant", "content": original_data["output"][index]},
|
|
]
|
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [8])
|
|
def test_supervised_multi_turn(num_samples: int):
|
|
train_dataset = load_train_dataset(dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", **TRAIN_ARGS)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
|
for index in indexes:
|
|
ref_input_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
|
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [4])
|
|
def test_supervised_train_on_prompt(num_samples: int):
|
|
train_dataset = load_train_dataset(
|
|
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", train_on_prompt=True, **TRAIN_ARGS
|
|
)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
|
for index in indexes:
|
|
ref_ids = ref_tokenizer.apply_chat_template(original_data["messages"][index])
|
|
assert train_dataset["input_ids"][index] == ref_ids
|
|
assert train_dataset["labels"][index] == ref_ids
|
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [4])
|
|
def test_supervised_mask_history(num_samples: int):
|
|
train_dataset = load_train_dataset(
|
|
dataset_dir="REMOTE:" + DEMO_DATA, dataset="system_chat", mask_history=True, **TRAIN_ARGS
|
|
)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA)
|
|
original_data = load_dataset(DEMO_DATA, name="system_chat", split="train")
|
|
indexes = random.choices(range(len(original_data)), k=num_samples)
|
|
for index in indexes:
|
|
messages = original_data["messages"][index]
|
|
ref_input_ids = ref_tokenizer.apply_chat_template(messages)
|
|
prompt_len = len(ref_tokenizer.apply_chat_template(messages[:-1], add_generation_prompt=True))
|
|
ref_label_ids = [IGNORE_INDEX] * prompt_len + ref_input_ids[prompt_len:]
|
|
assert train_dataset["input_ids"][index] == ref_input_ids
|
|
assert train_dataset["labels"][index] == ref_label_ids
|