49 lines
1.8 KiB
Python
49 lines
1.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 Microsoft Corporation and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the Microsoft's DeepSpeed library.
|
|
# https://www.deepspeed.ai/tutorials/flops-profiler/
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fire
|
|
import torch
|
|
from deepspeed.accelerator import get_accelerator # type: ignore
|
|
from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore
|
|
|
|
from llamafactory.chat import ChatModel
|
|
|
|
|
|
def calculate_flops(
|
|
model_name_or_path: str,
|
|
batch_size: int = 1,
|
|
seq_length: int = 256,
|
|
flash_attn: str = "auto",
|
|
):
|
|
r"""
|
|
Calculates the flops of pre-trained models.
|
|
Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
|
|
"""
|
|
with get_accelerator().device(0):
|
|
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn))
|
|
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)
|
|
input_dict = {"input_ids": fake_input, "labels": fake_input.clone()}
|
|
flops, macs, params = get_model_profile(chat_model.model, kwargs=input_dict, print_profile=True, detailed=True)
|
|
print("FLOPs:", flops)
|
|
print("MACs:", macs)
|
|
print("Params:", params)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(calculate_flops)
|