4dcb11eab7 | ||
---|---|---|
.. | ||
belle_multiturn | ||
example_dataset | ||
hh_rlhf_en | ||
ultra_chat | ||
README.md | ||
README_zh.md | ||
alpaca_data_en_52k.json | ||
alpaca_data_zh_51k.json | ||
alpaca_gpt4_data_en.json | ||
alpaca_gpt4_data_zh.json | ||
c4_demo.json | ||
comparison_gpt4_data_en.json | ||
comparison_gpt4_data_zh.json | ||
dataset_info.json | ||
glaive_toolcall_10k.json | ||
identity.json | ||
lima.json | ||
llava_instruct_100.json | ||
oaast_rm.json | ||
oaast_rm_zh.json | ||
oaast_sft.json | ||
oaast_sft_zh.json | ||
orca_rlhf.json | ||
wiki_demo.txt |
README.md
If you are using a custom dataset, please provide your dataset definition in the following format in dataset_info.json
.
"dataset_name": {
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
"response": "the column name in the dataset containing the responses. (default: output)",
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)"
},
"tags (optional, used for the sharegpt format)": {
"role_tag": "the key in the message represents the identity. (default: from)",
"content_tag": "the key in the message represents the content. (default: value)",
"user_tag": "the value of the role_tag represents the user. (default: human)",
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
}
}
Given above, you can use the custom dataset via specifying --dataset dataset_name
.
Currently we support dataset in alpaca or sharegpt format, the dataset in alpaca format should follow the below format:
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"output": "model response (required)",
"system": "system prompt (optional)",
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
Regarding the above dataset, the columns
in dataset_info.json
should be:
"dataset_name": {
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
The query
column will be concatenated with the prompt
column and used as the user prompt, then the user prompt would be prompt\nquery
. The response
column represents the model response.
The system
column will be used as the system prompt. The history
column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history will also be used for training.
For the pre-training datasets, only the prompt
column will be used for training.
For the preference datasets, the response
column should be a string list whose length is 2, with the preferred answers appearing first, for example:
{
"instruction": "user instruction",
"input": "user input",
"output": [
"chosen answer",
"rejected answer"
]
}
Remember to set "ranking": true
for the preference datasets.
The dataset in sharegpt format should follow the below format:
[
{
"conversations": [
{
"from": "human",
"value": "user instruction"
},
{
"from": "gpt",
"value": "model response"
}
],
"system": "system prompt (optional)",
"tools": "tool description (optional)"
}
]
Regarding the above dataset, the columns
in dataset_info.json
should be:
"dataset_name": {
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
}
}
where the messages
column should be a list following the u/a/u/a/u/a
order.
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.