LLaMA-Factory-Mirror/help.txt

8360 lines
492 KiB
Plaintext
Raw Normal View History

2024-08-16 19:04:18 +08:00
08/16/2024 11:02:54 - INFO - llamafactory.cli - Initializing distributed tasks at: 127.0.0.1:28784
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7fa4d999efd0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7f0f4840dfd0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7fe22dc1efd0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7ff0cf26fee0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7f738a5e8fd0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7f253d26fee0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)
usage: launcher.py [-h] --model_name_or_path MODEL_NAME_OR_PATH
[--adapter_name_or_path ADAPTER_NAME_OR_PATH]
[--adapter_folder ADAPTER_FOLDER] [--cache_dir CACHE_DIR]
[--use_fast_tokenizer [USE_FAST_TOKENIZER]]
[--no_use_fast_tokenizer] [--resize_vocab [RESIZE_VOCAB]]
[--split_special_tokens [SPLIT_SPECIAL_TOKENS]]
[--new_special_tokens NEW_SPECIAL_TOKENS]
[--model_revision MODEL_REVISION]
[--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]]
[--no_low_cpu_mem_usage]
[--quantization_method {bitsandbytes,hqq,eetq}]
[--quantization_bit QUANTIZATION_BIT]
[--quantization_type {fp4,nf4}]
[--double_quantization [DOUBLE_QUANTIZATION]]
[--no_double_quantization]
[--quantization_device_map {auto}]
[--rope_scaling {linear,dynamic}]
[--flash_attn {auto,disabled,sdpa,fa2}]
[--shift_attn [SHIFT_ATTN]]
[--mixture_of_depths {convert,load}]
[--use_unsloth [USE_UNSLOTH]]
[--visual_inputs [VISUAL_INPUTS]]
[--moe_aux_loss_coef MOE_AUX_LOSS_COEF]
[--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]]
[--upcast_layernorm [UPCAST_LAYERNORM]]
[--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]]
[--train_from_scratch [TRAIN_FROM_SCRATCH]]
[--infer_backend {huggingface,vllm}]
[--vllm_maxlen VLLM_MAXLEN] [--vllm_gpu_util VLLM_GPU_UTIL]
[--vllm_enforce_eager [VLLM_ENFORCE_EAGER]]
[--vllm_max_lora_rank VLLM_MAX_LORA_RANK]
[--offload_folder OFFLOAD_FOLDER] [--use_cache [USE_CACHE]]
[--no_use_cache]
[--infer_dtype {auto,float16,bfloat16,float32}]
[--hf_hub_token HF_HUB_TOKEN] [--ms_hub_token MS_HUB_TOKEN]
[--export_dir EXPORT_DIR] [--export_size EXPORT_SIZE]
[--export_device {cpu,auto}]
[--export_quantization_bit EXPORT_QUANTIZATION_BIT]
[--export_quantization_dataset EXPORT_QUANTIZATION_DATASET]
[--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES]
[--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN]
[--export_legacy_format [EXPORT_LEGACY_FORMAT]]
[--export_hub_model_id EXPORT_HUB_MODEL_ID]
[--print_param_status [PRINT_PARAM_STATUS]]
[--template TEMPLATE] [--dataset DATASET]
[--eval_dataset EVAL_DATASET] [--dataset_dir DATASET_DIR]
[--cutoff_len CUTOFF_LEN]
[--train_on_prompt [TRAIN_ON_PROMPT]]
[--mask_history [MASK_HISTORY]] [--streaming [STREAMING]]
[--buffer_size BUFFER_SIZE]
[--mix_strategy {concat,interleave_under,interleave_over}]
[--interleave_probs INTERLEAVE_PROBS]
[--overwrite_cache [OVERWRITE_CACHE]]
[--preprocessing_num_workers PREPROCESSING_NUM_WORKERS]
[--max_samples MAX_SAMPLES]
[--eval_num_beams EVAL_NUM_BEAMS]
[--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]]
[--no_ignore_pad_token_for_loss] [--val_size VAL_SIZE]
[--packing PACKING] [--neat_packing [NEAT_PACKING]]
[--tool_format TOOL_FORMAT]
[--tokenized_path TOKENIZED_PATH] --output_dir OUTPUT_DIR
[--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]]
[--do_train [DO_TRAIN]] [--do_eval [DO_EVAL]]
[--do_predict [DO_PREDICT]]
[--eval_strategy {no,steps,epoch}]
[--prediction_loss_only [PREDICTION_LOSS_ONLY]]
[--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE]
[--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE]
[--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE]
[--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE]
[--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS]
[--eval_accumulation_steps EVAL_ACCUMULATION_STEPS]
[--eval_delay EVAL_DELAY]
[--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS]
[--learning_rate LEARNING_RATE]
[--weight_decay WEIGHT_DECAY] [--adam_beta1 ADAM_BETA1]
[--adam_beta2 ADAM_BETA2] [--adam_epsilon ADAM_EPSILON]
[--max_grad_norm MAX_GRAD_NORM]
[--num_train_epochs NUM_TRAIN_EPOCHS]
[--max_steps MAX_STEPS]
[--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}]
[--lr_scheduler_kwargs LR_SCHEDULER_KWARGS]
[--warmup_ratio WARMUP_RATIO] [--warmup_steps WARMUP_STEPS]
[--log_level {detail,debug,info,warning,error,critical,passive}]
[--log_level_replica {detail,debug,info,warning,error,critical,passive}]
[--log_on_each_node [LOG_ON_EACH_NODE]]
[--no_log_on_each_node] [--logging_dir LOGGING_DIR]
[--logging_strategy {no,steps,epoch}]
[--logging_first_step [LOGGING_FIRST_STEP]]
[--logging_steps LOGGING_STEPS]
[--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]]
[--no_logging_nan_inf_filter]
[--save_strategy {no,steps,epoch}]
[--save_steps SAVE_STEPS]
[--save_total_limit SAVE_TOTAL_LIMIT]
[--save_safetensors [SAVE_SAFETENSORS]]
[--no_save_safetensors]
[--save_on_each_node [SAVE_ON_EACH_NODE]]
[--save_only_model [SAVE_ONLY_MODEL]]
[--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]]
[--no_cuda [NO_CUDA]] [--use_cpu [USE_CPU]]
[--use_mps_device [USE_MPS_DEVICE]] [--seed SEED]
[--data_seed DATA_SEED] [--jit_mode_eval [JIT_MODE_EVAL]]
[--use_ipex [USE_IPEX]] [--bf16 [BF16]] [--fp16 [FP16]]
[--fp16_opt_level FP16_OPT_LEVEL]
[--half_precision_backend {auto,apex,cpu_amp}]
[--bf16_full_eval [BF16_FULL_EVAL]]
[--fp16_full_eval [FP16_FULL_EVAL]] [--tf32 TF32]
[--local_rank LOCAL_RANK]
[--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}]
[--tpu_num_cores TPU_NUM_CORES]
[--tpu_metrics_debug [TPU_METRICS_DEBUG]]
[--debug DEBUG [DEBUG ...]]
[--dataloader_drop_last [DATALOADER_DROP_LAST]]
[--eval_steps EVAL_STEPS]
[--dataloader_num_workers DATALOADER_NUM_WORKERS]
[--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR]
[--past_index PAST_INDEX] [--run_name RUN_NAME]
[--disable_tqdm DISABLE_TQDM]
[--remove_unused_columns [REMOVE_UNUSED_COLUMNS]]
[--no_remove_unused_columns]
[--label_names LABEL_NAMES [LABEL_NAMES ...]]
[--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]]
[--metric_for_best_model METRIC_FOR_BEST_MODEL]
[--greater_is_better GREATER_IS_BETTER]
[--ignore_data_skip [IGNORE_DATA_SKIP]] [--fsdp FSDP]
[--fsdp_min_num_params FSDP_MIN_NUM_PARAMS]
[--fsdp_config FSDP_CONFIG]
[--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP]
[--accelerator_config ACCELERATOR_CONFIG]
[--deepspeed DEEPSPEED]
[--label_smoothing_factor LABEL_SMOOTHING_FACTOR]
[--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}]
[--optim_args OPTIM_ARGS] [--adafactor [ADAFACTOR]]
[--group_by_length [GROUP_BY_LENGTH]]
[--length_column_name LENGTH_COLUMN_NAME]
[--report_to REPORT_TO]
[--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS]
[--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB]
[--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS]
[--dataloader_pin_memory [DATALOADER_PIN_MEMORY]]
[--no_dataloader_pin_memory]
[--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]]
[--skip_memory_metrics [SKIP_MEMORY_METRICS]]
[--no_skip_memory_metrics]
[--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]]
[--push_to_hub [PUSH_TO_HUB]]
[--resume_from_checkpoint RESUME_FROM_CHECKPOINT]
[--hub_model_id HUB_MODEL_ID]
[--hub_strategy {end,every_save,checkpoint,all_checkpoints}]
[--hub_token HUB_TOKEN]
[--hub_private_repo [HUB_PRIVATE_REPO]]
[--hub_always_push [HUB_ALWAYS_PUSH]]
[--gradient_checkpointing [GRADIENT_CHECKPOINTING]]
[--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS]
[--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]]
[--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]]
[--no_eval_do_concat_batches]
[--fp16_backend {auto,apex,cpu_amp}]
[--evaluation_strategy {no,steps,epoch}]
[--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID]
[--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION]
[--push_to_hub_token PUSH_TO_HUB_TOKEN]
[--mp_parameters MP_PARAMETERS]
[--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]]
[--full_determinism [FULL_DETERMINISM]]
[--torchdynamo TORCHDYNAMO] [--ray_scope RAY_SCOPE]
[--ddp_timeout DDP_TIMEOUT]
[--torch_compile [TORCH_COMPILE]]
[--torch_compile_backend TORCH_COMPILE_BACKEND]
[--torch_compile_mode TORCH_COMPILE_MODE]
[--dispatch_batches DISPATCH_BATCHES]
[--split_batches SPLIT_BATCHES]
[--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]]
[--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]]
[--neftune_noise_alpha NEFTUNE_NOISE_ALPHA]
[--optim_target_modules OPTIM_TARGET_MODULES]
[--batch_eval_metrics [BATCH_EVAL_METRICS]]
[--eval_on_start [EVAL_ON_START]]
[--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]]
[--sortish_sampler [SORTISH_SAMPLER]]
[--predict_with_generate [PREDICT_WITH_GENERATE]]
[--generation_max_length GENERATION_MAX_LENGTH]
[--generation_num_beams GENERATION_NUM_BEAMS]
[--generation_config GENERATION_CONFIG]
[--use_badam [USE_BADAM]] [--badam_mode {layer,ratio}]
[--badam_start_block BADAM_START_BLOCK]
[--badam_switch_mode {ascending,descending,random,fixed}]
[--badam_switch_interval BADAM_SWITCH_INTERVAL]
[--badam_update_ratio BADAM_UPDATE_RATIO]
[--badam_mask_mode {adjacent,scatter}]
[--badam_verbose BADAM_VERBOSE] [--use_galore [USE_GALORE]]
[--galore_target GALORE_TARGET] [--galore_rank GALORE_RANK]
[--galore_update_interval GALORE_UPDATE_INTERVAL]
[--galore_scale GALORE_SCALE]
[--galore_proj_type {std,reverse_std,right,left,full}]
[--galore_layerwise [GALORE_LAYERWISE]]
[--pref_beta PREF_BETA] [--pref_ftx PREF_FTX]
[--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}]
[--dpo_label_smoothing DPO_LABEL_SMOOTHING]
[--kto_chosen_weight KTO_CHOSEN_WEIGHT]
[--kto_rejected_weight KTO_REJECTED_WEIGHT]
[--simpo_gamma SIMPO_GAMMA]
[--ppo_buffer_size PPO_BUFFER_SIZE]
[--ppo_epochs PPO_EPOCHS]
[--ppo_score_norm [PPO_SCORE_NORM]]
[--ppo_target PPO_TARGET]
[--ppo_whiten_rewards [PPO_WHITEN_REWARDS]]
[--ref_model REF_MODEL]
[--ref_model_adapters REF_MODEL_ADAPTERS]
[--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT]
[--reward_model REWARD_MODEL]
[--reward_model_adapters REWARD_MODEL_ADAPTERS]
[--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT]
[--reward_model_type {lora,full,api}]
[--additional_target ADDITIONAL_TARGET]
[--lora_alpha LORA_ALPHA] [--lora_dropout LORA_DROPOUT]
[--lora_rank LORA_RANK] [--lora_target LORA_TARGET]
[--loraplus_lr_ratio LORAPLUS_LR_RATIO]
[--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING]
[--use_rslora [USE_RSLORA]] [--use_dora [USE_DORA]]
[--pissa_init [PISSA_INIT]] [--pissa_iter PISSA_ITER]
[--pissa_convert [PISSA_CONVERT]]
[--create_new_adapter [CREATE_NEW_ADAPTER]]
[--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS]
[--freeze_trainable_modules FREEZE_TRAINABLE_MODULES]
[--freeze_extra_modules FREEZE_EXTRA_MODULES]
[--pure_bf16 [PURE_BF16]] [--stage {pt,sft,rm,ppo,dpo,kto}]
[--finetuning_type {lora,freeze,full}]
[--use_llama_pro [USE_LLAMA_PRO]]
[--use_adam_mini [USE_ADAM_MINI]]
[--freeze_vision_tower [FREEZE_VISION_TOWER]]
[--no_freeze_vision_tower]
[--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]]
[--compute_accuracy [COMPUTE_ACCURACY]]
[--plot_loss [PLOT_LOSS]] [--do_sample [DO_SAMPLE]]
[--no_do_sample] [--temperature TEMPERATURE]
[--top_p TOP_P] [--top_k TOP_K] [--num_beams NUM_BEAMS]
[--max_length MAX_LENGTH] [--max_new_tokens MAX_NEW_TOKENS]
[--repetition_penalty REPETITION_PENALTY]
[--length_penalty LENGTH_PENALTY]
[--default_system DEFAULT_SYSTEM]
optional arguments:
-h, --help show this help message and exit
--model_name_or_path MODEL_NAME_OR_PATH
Path to the model weight or identifier from
huggingface.co/models or modelscope.cn/models.
(default: None)
--adapter_name_or_path ADAPTER_NAME_OR_PATH
Path to the adapter weight or identifier from
huggingface.co/models. Use commas to separate multiple
adapters. (default: None)
--adapter_folder ADAPTER_FOLDER
The folder containing the adapter weights to load.
(default: None)
--cache_dir CACHE_DIR
Where to store the pre-trained models downloaded from
huggingface.co or modelscope.cn. (default: None)
--use_fast_tokenizer [USE_FAST_TOKENIZER]
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: True)
--no_use_fast_tokenizer
Whether or not to use one of the fast tokenizer
(backed by the tokenizers library). (default: False)
--resize_vocab [RESIZE_VOCAB]
Whether or not to resize the tokenizer vocab and the
embedding layers. (default: False)
--split_special_tokens [SPLIT_SPECIAL_TOKENS]
Whether or not the special tokens should be split
during the tokenization process. (default: False)
--new_special_tokens NEW_SPECIAL_TOKENS
Special tokens to be added into the tokenizer. Use
commas to separate multiple tokens. (default: None)
--model_revision MODEL_REVISION
The specific model version to use (can be a branch
name, tag name or commit id). (default: main)
--low_cpu_mem_usage [LOW_CPU_MEM_USAGE]
Whether or not to use memory-efficient model loading.
(default: True)
--no_low_cpu_mem_usage
Whether or not to use memory-efficient model loading.
(default: False)
--quantization_method {bitsandbytes,hqq,eetq}
Quantization method to use for on-the-fly
quantization. (default: bitsandbytes)
--quantization_bit QUANTIZATION_BIT
The number of bits to quantize the model using
bitsandbytes. (default: None)
--quantization_type {fp4,nf4}
Quantization data type to use in int4 training.
(default: nf4)
--double_quantization [DOUBLE_QUANTIZATION]
Whether or not to use double quantization in int4
training. (default: True)
--no_double_quantization
Whether or not to use double quantization in int4
training. (default: False)
--quantization_device_map {auto}
Device map used to infer the 4-bit quantized model,
needs bitsandbytes>=0.43.0. (default: None)
--rope_scaling {linear,dynamic}
Which scaling strategy should be adopted for the RoPE
embeddings. (default: None)
--flash_attn {auto,disabled,sdpa,fa2}
Enable FlashAttention for faster training and
inference. (default: auto)
--shift_attn [SHIFT_ATTN]
Enable shift short attention (S^2-Attn) proposed by
LongLoRA. (default: False)
--mixture_of_depths {convert,load}
Convert the model to mixture-of-depths (MoD) or load
the MoD model. (default: None)
--use_unsloth [USE_UNSLOTH]
Whether or not to use unsloth's optimization for the
LoRA training. (default: False)
--visual_inputs [VISUAL_INPUTS]
Whethor or not to use multimodal LLM that accepts
visual inputs. (default: False)
--moe_aux_loss_coef MOE_AUX_LOSS_COEF
Coefficient of the auxiliary router loss in mixture-
of-experts model. (default: None)
--disable_gradient_checkpointing [DISABLE_GRADIENT_CHECKPOINTING]
Whether or not to disable gradient checkpointing.
(default: False)
--upcast_layernorm [UPCAST_LAYERNORM]
Whether or not to upcast the layernorm weights in
fp32. (default: False)
--upcast_lmhead_output [UPCAST_LMHEAD_OUTPUT]
Whether or not to upcast the output of lm_head in
fp32. (default: False)
--train_from_scratch [TRAIN_FROM_SCRATCH]
Whether or not to randomly initialize the model
weights. (default: False)
--infer_backend {huggingface,vllm}
Backend engine used at inference. (default:
huggingface)
--vllm_maxlen VLLM_MAXLEN
Maximum sequence (prompt + response) length of the
vLLM engine. (default: 2048)
--vllm_gpu_util VLLM_GPU_UTIL
The fraction of GPU memory in (0,1) to be used for the
vLLM engine. (default: 0.9)
--vllm_enforce_eager [VLLM_ENFORCE_EAGER]
Whether or not to disable CUDA graph in the vLLM
engine. (default: False)
--vllm_max_lora_rank VLLM_MAX_LORA_RANK
Maximum rank of all LoRAs in the vLLM engine.
(default: 32)
--offload_folder OFFLOAD_FOLDER
Path to offload model weights. (default: offload)
--use_cache [USE_CACHE]
Whether or not to use KV cache in generation.
(default: True)
--no_use_cache Whether or not to use KV cache in generation.
(default: False)
--infer_dtype {auto,float16,bfloat16,float32}
Data type for model weights and activations at
inference. (default: auto)
--hf_hub_token HF_HUB_TOKEN
Auth token to log in with Hugging Face Hub. (default:
None)
--ms_hub_token MS_HUB_TOKEN
Auth token to log in with ModelScope Hub. (default:
None)
--export_dir EXPORT_DIR
Path to the directory to save the exported model.
(default: None)
--export_size EXPORT_SIZE
The file shard size (in GB) of the exported model.
(default: 1)
--export_device {cpu,auto}
The device used in model export, use `auto` to
accelerate exporting. (default: cpu)
--export_quantization_bit EXPORT_QUANTIZATION_BIT
The number of bits to quantize the exported model.
(default: None)
--export_quantization_dataset EXPORT_QUANTIZATION_DATASET
Path to the dataset or dataset name to use in
quantizing the exported model. (default: None)
--export_quantization_nsamples EXPORT_QUANTIZATION_NSAMPLES
The number of samples used for quantization. (default:
128)
--export_quantization_maxlen EXPORT_QUANTIZATION_MAXLEN
The maximum length of the model inputs used for
quantization. (default: 1024)
--export_legacy_format [EXPORT_LEGACY_FORMAT]
Whether or not to save the `.bin` files instead of
`.safetensors`. (default: False)
--export_hub_model_id EXPORT_HUB_MODEL_ID
The name of the repository if push the model to the
Hugging Face hub. (default: None)
--print_param_status [PRINT_PARAM_STATUS]
For debugging purposes, print the status of the
parameters in the model. (default: False)
--template TEMPLATE Which template to use for constructing prompts in
training and inference. (default: None)
--dataset DATASET The name of dataset(s) to use for training. Use commas
to separate multiple datasets. (default: None)
--eval_dataset EVAL_DATASET
The name of dataset(s) to use for evaluation. Use
commas to separate multiple datasets. (default: None)
--dataset_dir DATASET_DIR
Path to the folder containing the datasets. (default:
data)
--cutoff_len CUTOFF_LEN
The cutoff length of the tokenized inputs in the
dataset. (default: 1024)
--train_on_prompt [TRAIN_ON_PROMPT]
Whether or not to disable the mask on the prompt.
(default: False)
--mask_history [MASK_HISTORY]
Whether or not to mask the history and train on the
last turn only. (default: False)
--streaming [STREAMING]
Enable dataset streaming. (default: False)
--buffer_size BUFFER_SIZE
Size of the buffer to randomly sample examples from in
dataset streaming. (default: 16384)
--mix_strategy {concat,interleave_under,interleave_over}
Strategy to use in dataset mixing (concat/interleave)
(undersampling/oversampling). (default: concat)
--interleave_probs INTERLEAVE_PROBS
Probabilities to sample data from datasets. Use commas
to separate multiple datasets. (default: None)
--overwrite_cache [OVERWRITE_CACHE]
Overwrite the cached training and evaluation sets.
(default: False)
--preprocessing_num_workers PREPROCESSING_NUM_WORKERS
The number of processes to use for the pre-processing.
(default: None)
--max_samples MAX_SAMPLES
For debugging purposes, truncate the number of
examples for each dataset. (default: None)
--eval_num_beams EVAL_NUM_BEAMS
Number of beams to use for evaluation. This argument
will be passed to `model.generate` (default: None)
--ignore_pad_token_for_loss [IGNORE_PAD_TOKEN_FOR_LOSS]
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: True)
--no_ignore_pad_token_for_loss
Whether or not to ignore the tokens corresponding to
the pad label in loss computation. (default: False)
--val_size VAL_SIZE Size of the development set, should be an integer or a
float in range `[0,1)`. (default: 0.0)
--packing PACKING Enable sequences packing in training. Will
automatically enable in pre-training. (default: None)
--neat_packing [NEAT_PACKING]
Enable sequence packing without cross-attention.
(default: False)
--tool_format TOOL_FORMAT
Tool format to use for constructing function calling
examples. (default: None)
--tokenized_path TOKENIZED_PATH
Path to save or load the tokenized datasets. (default:
None)
--output_dir OUTPUT_DIR
The output directory where the model predictions and
checkpoints will be written. (default: None)
--overwrite_output_dir [OVERWRITE_OUTPUT_DIR]
Overwrite the content of the output directory. Use
this to continue training if output_dir points to a
checkpoint directory. (default: False)
--do_train [DO_TRAIN]
Whether to run training. (default: False)
--do_eval [DO_EVAL] Whether to run eval on the dev set. (default: False)
--do_predict [DO_PREDICT]
Whether to run predictions on the test set. (default:
False)
--eval_strategy {no,steps,epoch}
The evaluation strategy to use. (default: no)
--prediction_loss_only [PREDICTION_LOSS_ONLY]
When performing evaluation and predictions, only
returns the loss. (default: False)
--per_device_train_batch_size PER_DEVICE_TRAIN_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for training.
(default: 8)
--per_device_eval_batch_size PER_DEVICE_EVAL_BATCH_SIZE
Batch size per GPU/TPU/MPS/NPU core/CPU for
evaluation. (default: 8)
--per_gpu_train_batch_size PER_GPU_TRAIN_BATCH_SIZE
Deprecated, the use of `--per_device_train_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
training. (default: None)
--per_gpu_eval_batch_size PER_GPU_EVAL_BATCH_SIZE
Deprecated, the use of `--per_device_eval_batch_size`
is preferred. Batch size per GPU/TPU core/CPU for
evaluation. (default: None)
--gradient_accumulation_steps GRADIENT_ACCUMULATION_STEPS
Number of updates steps to accumulate before
performing a backward/update pass. (default: 1)
--eval_accumulation_steps EVAL_ACCUMULATION_STEPS
Number of predictions steps to accumulate before
moving the tensors to the CPU. (default: None)
--eval_delay EVAL_DELAY
Number of epochs or steps to wait for before the first
evaluation can be performed, depending on the
eval_strategy. (default: 0)
--torch_empty_cache_steps TORCH_EMPTY_CACHE_STEPS
Number of steps to wait before calling
`torch.<device>.empty_cache()`.This can help avoid
CUDA out-of-memory errors by lowering peak VRAM usage
at a cost of about [10{'option_strings': ['--
torch_empty_cache_steps'], 'dest':
'torch_empty_cache_steps', 'nargs': None, 'const':
None, 'default': None, 'type': 'int', 'choices': None,
'required': False, 'help': 'Number of steps to wait
before calling `torch.<device>.empty_cache()`.This can
help avoid CUDA out-of-memory errors by lowering peak
VRAM usage at a cost of about [10% slower performance]
(https://github.com/huggingface/transformers/issues/31
372).If left unset or set to None, cache will not be
emptied.', 'metavar': None, 'container':
<argparse._ArgumentGroup object at 0x7f051d170ee0>,
'prog': 'launcher.py'}lower performance](https://githu
b.com/huggingface/transformers/issues/31372).If left
unset or set to None, cache will not be emptied.
(default: None)
--learning_rate LEARNING_RATE
The initial learning rate for AdamW. (default: 5e-05)
--weight_decay WEIGHT_DECAY
Weight decay for AdamW if we apply some. (default:
0.0)
--adam_beta1 ADAM_BETA1
Beta1 for AdamW optimizer (default: 0.9)
--adam_beta2 ADAM_BETA2
Beta2 for AdamW optimizer (default: 0.999)
--adam_epsilon ADAM_EPSILON
Epsilon for AdamW optimizer. (default: 1e-08)
--max_grad_norm MAX_GRAD_NORM
Max gradient norm. (default: 1.0)
--num_train_epochs NUM_TRAIN_EPOCHS
Total number of training epochs to perform. (default:
3.0)
--max_steps MAX_STEPS
If > 0: set total number of training steps to perform.
Override num_train_epochs. (default: -1)
--lr_scheduler_type {linear,cosine,cosine_with_restarts,polynomial,constant,constant_with_warmup,inverse_sqrt,reduce_lr_on_plateau,cosine_with_min_lr,warmup_stable_decay}
The scheduler type to use. (default: linear)
--lr_scheduler_kwargs LR_SCHEDULER_KWARGS
Extra parameters for the lr_scheduler such as
{'num_cycles': 1} for the cosine with hard restarts.
(default: {})
--warmup_ratio WARMUP_RATIO
Linear warmup over warmup_ratio fraction of total
steps. (default: 0.0)
--warmup_steps WARMUP_STEPS
Linear warmup over warmup_steps. (default: 0)
--log_level {detail,debug,info,warning,error,critical,passive}
Logger log level to use on the main node. Possible
choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a
'passive' level which doesn't set anything and lets
the application set the level. Defaults to 'passive'.
(default: passive)
--log_level_replica {detail,debug,info,warning,error,critical,passive}
Logger log level to use on replica nodes. Same choices
and defaults as ``log_level`` (default: warning)
--log_on_each_node [LOG_ON_EACH_NODE]
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: True)
--no_log_on_each_node
When doing a multinode distributed training, whether
to log once per node or just once on the main node.
(default: False)
--logging_dir LOGGING_DIR
Tensorboard log dir. (default: None)
--logging_strategy {no,steps,epoch}
The logging strategy to use. (default: steps)
--logging_first_step [LOGGING_FIRST_STEP]
Log the first global_step (default: False)
--logging_steps LOGGING_STEPS
Log every X updates steps. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be
interpreted as ratio of total training steps.
(default: 500)
--logging_nan_inf_filter [LOGGING_NAN_INF_FILTER]
Filter nan and inf losses for logging. (default: True)
--no_logging_nan_inf_filter
Filter nan and inf losses for logging. (default:
False)
--save_strategy {no,steps,epoch}
The checkpoint save strategy to use. (default: steps)
--save_steps SAVE_STEPS
Save checkpoint every X updates steps. Should be an
integer or a float in range `[0,1)`. If smaller than
1, will be interpreted as ratio of total training
steps. (default: 500)
--save_total_limit SAVE_TOTAL_LIMIT
If a value is passed, will limit the total amount of
checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is
enabled, the 'best' checkpoint according to
`metric_for_best_model` will always be retained in
addition to the most recent ones. For example, for
`save_total_limit=5` and
`load_best_model_at_end=True`, the four last
checkpoints will always be retained alongside the best
model. When `save_total_limit=1` and
`load_best_model_at_end=True`, it is possible that two
checkpoints are saved: the last one and the best one
(if they are different). Default is unlimited
checkpoints (default: None)
--save_safetensors [SAVE_SAFETENSORS]
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: True)
--no_save_safetensors
Use safetensors saving and loading for state dicts
instead of default torch.load and torch.save.
(default: False)
--save_on_each_node [SAVE_ON_EACH_NODE]
When doing multi-node distributed training, whether to
save models and checkpoints on each node, or only on
the main one (default: False)
--save_only_model [SAVE_ONLY_MODEL]
When checkpointing, whether to only save the model, or
also the optimizer, scheduler & rng state.Note that
when this is true, you won't be able to resume
training from checkpoint.This enables you to save
storage by not storing the optimizer, scheduler & rng
state.You can only load the model using
from_pretrained with this option set to True.
(default: False)
--restore_callback_states_from_checkpoint [RESTORE_CALLBACK_STATES_FROM_CHECKPOINT]
Whether to restore the callback states from the
checkpoint. If `True`, will override callbacks passed
to the `Trainer` if they exist in the checkpoint.
(default: False)
--no_cuda [NO_CUDA] This argument is deprecated. It will be removed in
version 5.0 of 🤗 Transformers. (default: False)
--use_cpu [USE_CPU] Whether or not to use cpu. If set to False, we will
use cuda/tpu/mps/npu device if available. (default:
False)
--use_mps_device [USE_MPS_DEVICE]
This argument is deprecated. `mps` device will be used
if available similar to `cuda` device. It will be
removed in version 5.0 of 🤗 Transformers (default:
False)
--seed SEED Random seed that will be set at the beginning of
training. (default: 42)
--data_seed DATA_SEED
Random seed to be used with data samplers. (default:
None)
--jit_mode_eval [JIT_MODE_EVAL]
Whether or not to use PyTorch jit trace for inference
(default: False)
--use_ipex [USE_IPEX]
Use Intel extension for PyTorch when it is available,
installation: 'https://github.com/intel/intel-
extension-for-pytorch' (default: False)
--bf16 [BF16] Whether to use bf16 (mixed) precision instead of
32-bit. Requires Ampere or higher NVIDIA architecture
or using CPU (use_cpu) or Ascend NPU. This is an
experimental API and it may change. (default: False)
--fp16 [FP16] Whether to use fp16 (mixed) precision instead of
32-bit (default: False)
--fp16_opt_level FP16_OPT_LEVEL
For fp16: Apex AMP optimization level selected in
['O0', 'O1', 'O2', and 'O3']. See details at
https://nvidia.github.io/apex/amp.html (default: O1)
--half_precision_backend {auto,apex,cpu_amp}
The backend to be used for half precision. (default:
auto)
--bf16_full_eval [BF16_FULL_EVAL]
Whether to use full bfloat16 evaluation instead of
32-bit. This is an experimental API and it may change.
(default: False)
--fp16_full_eval [FP16_FULL_EVAL]
Whether to use full float16 evaluation instead of
32-bit (default: False)
--tf32 TF32 Whether to enable tf32 mode, available in Ampere and
newer GPU architectures. This is an experimental API
and it may change. (default: None)
--local_rank LOCAL_RANK
For distributed training: local_rank (default: -1)
--ddp_backend {nccl,gloo,mpi,ccl,hccl,cncl}
The backend to be used for distributed training
(default: None)
--tpu_num_cores TPU_NUM_CORES
TPU: Number of TPU cores (automatically passed by
launcher script) (default: None)
--tpu_metrics_debug [TPU_METRICS_DEBUG]
Deprecated, the use of `--debug tpu_metrics_debug` is
preferred. TPU: Whether to print debug metrics
(default: False)
--debug DEBUG [DEBUG ...]
Whether or not to enable debug mode. Current options:
`underflow_overflow` (Detect underflow and overflow in
activations and weights), `tpu_metrics_debug` (print
debug metrics on TPU). (default: None)
--dataloader_drop_last [DATALOADER_DROP_LAST]
Drop the last incomplete batch if it is not divisible
by the batch size. (default: False)
--eval_steps EVAL_STEPS
Run an evaluation every X steps. Should be an integer
or a float in range `[0,1)`. If smaller than 1, will
be interpreted as ratio of total training steps.
(default: None)
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading
(PyTorch only). 0 means that the data will be loaded
in the main process. (default: 0)
--dataloader_prefetch_factor DATALOADER_PREFETCH_FACTOR
Number of batches loaded in advance by each worker. 2
means there will be a total of 2 * num_workers batches
prefetched across all workers. Default is 2 for
PyTorch < 2.0.0 and otherwise None. (default: None)
--past_index PAST_INDEX
If >=0, uses the corresponding part of the output as
the past state for next step. (default: -1)
--run_name RUN_NAME An optional descriptor for the run. Notably used for
wandb, mlflow and comet logging. (default: None)
--disable_tqdm DISABLE_TQDM
Whether or not to disable the tqdm progress bars.
(default: None)
--remove_unused_columns [REMOVE_UNUSED_COLUMNS]
Remove columns not required by the model when using an
nlp.Dataset. (default: True)
--no_remove_unused_columns
Remove columns not required by the model when using an
nlp.Dataset. (default: False)
--label_names LABEL_NAMES [LABEL_NAMES ...]
The list of keys in your dictionary of inputs that
correspond to the labels. (default: None)
--load_best_model_at_end [LOAD_BEST_MODEL_AT_END]
Whether or not to load the best model found during
training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See
`save_total_limit` for more. (default: False)
--metric_for_best_model METRIC_FOR_BEST_MODEL
The metric to use to compare two different models.
(default: None)
--greater_is_better GREATER_IS_BETTER
Whether the `metric_for_best_model` should be
maximized or not. (default: None)
--ignore_data_skip [IGNORE_DATA_SKIP]
When resuming training, whether or not to skip the
first epochs and batches to get to the same training
data. (default: False)
--fsdp FSDP Whether or not to use PyTorch Fully Sharded Data
Parallel (FSDP) training (in distributed training
only). The base option should be `full_shard`,
`shard_grad_op` or `no_shard` and you can add CPU-
offload to `full_shard` or `shard_grad_op` like this:
full_shard offload` or `shard_grad_op offload`. You
can add auto-wrap to `full_shard` or `shard_grad_op`
with the same syntax: full_shard auto_wrap` or
`shard_grad_op auto_wrap`. (default: )
--fsdp_min_num_params FSDP_MIN_NUM_PARAMS
This parameter is deprecated. FSDP's minimum number of
parameters for Default Auto Wrapping. (useful only
when `fsdp` field is passed). (default: 0)
--fsdp_config FSDP_CONFIG
Config to be used with FSDP (Pytorch Fully Sharded
Data Parallel). The value is either a fsdp json config
file (e.g., `fsdp_config.json`) or an already loaded
json file as `dict`. (default: None)
--fsdp_transformer_layer_cls_to_wrap FSDP_TRANSFORMER_LAYER_CLS_TO_WRAP
This parameter is deprecated. Transformer layer class
name (case-sensitive) to wrap, e.g, `BertLayer`,
`GPTJBlock`, `T5Block` .... (useful only when `fsdp`
flag is passed). (default: None)
--accelerator_config ACCELERATOR_CONFIG
Config to be used with the internal Accelerator object
initializtion. The value is either a accelerator json
config file (e.g., `accelerator_config.json`) or an
already loaded json file as `dict`. (default: None)
--deepspeed DEEPSPEED
Enable deepspeed and pass the path to deepspeed json
config file (e.g. `ds_config.json`) or an already
loaded json file as a dict (default: None)
--label_smoothing_factor LABEL_SMOOTHING_FACTOR
The label smoothing epsilon to apply (zero means no
label smoothing). (default: 0.0)
--optim {adamw_hf,adamw_torch,adamw_torch_fused,adamw_torch_xla,adamw_torch_npu_fused,adamw_apex_fused,adafactor,adamw_anyprecision,sgd,adagrad,adamw_bnb_8bit,adamw_8bit,lion_8bit,lion_32bit,paged_adamw_32bit,paged_adamw_8bit,paged_lion_32bit,paged_lion_8bit,rmsprop,rmsprop_bnb,rmsprop_bnb_8bit,rmsprop_bnb_32bit,galore_adamw,galore_adamw_8bit,galore_adafactor,galore_adamw_layerwise,galore_adamw_8bit_layerwise,galore_adafactor_layerwise,lomo,adalomo}
The optimizer to use. (default: adamw_torch)
--optim_args OPTIM_ARGS
Optional arguments to supply to optimizer. (default:
None)
--adafactor [ADAFACTOR]
Whether or not to replace AdamW by Adafactor.
(default: False)
--group_by_length [GROUP_BY_LENGTH]
Whether or not to group samples of roughly the same
length together when batching. (default: False)
--length_column_name LENGTH_COLUMN_NAME
Column name with precomputed lengths to use when
grouping by length. (default: length)
--report_to REPORT_TO
The list of integrations to report the results and
logs to. (default: None)
--ddp_find_unused_parameters DDP_FIND_UNUSED_PARAMETERS
When using distributed training, the value of the flag
`find_unused_parameters` passed to
`DistributedDataParallel`. (default: None)
--ddp_bucket_cap_mb DDP_BUCKET_CAP_MB
When using distributed training, the value of the flag
`bucket_cap_mb` passed to `DistributedDataParallel`.
(default: None)
--ddp_broadcast_buffers DDP_BROADCAST_BUFFERS
When using distributed training, the value of the flag
`broadcast_buffers` passed to
`DistributedDataParallel`. (default: None)
--dataloader_pin_memory [DATALOADER_PIN_MEMORY]
Whether or not to pin memory for DataLoader. (default:
True)
--no_dataloader_pin_memory
Whether or not to pin memory for DataLoader. (default:
False)
--dataloader_persistent_workers [DATALOADER_PERSISTENT_WORKERS]
If True, the data loader will not shut down the worker
processes after a dataset has been consumed once. This
allows to maintain the workers Dataset instances
alive. Can potentially speed up training, but will
increase RAM usage. (default: False)
--skip_memory_metrics [SKIP_MEMORY_METRICS]
Whether or not to skip adding of memory profiler
reports to metrics. (default: True)
--no_skip_memory_metrics
Whether or not to skip adding of memory profiler
reports to metrics. (default: False)
--use_legacy_prediction_loop [USE_LEGACY_PREDICTION_LOOP]
Whether or not to use the legacy prediction_loop in
the Trainer. (default: False)
--push_to_hub [PUSH_TO_HUB]
Whether or not to upload the trained model to the
model hub after training. (default: False)
--resume_from_checkpoint RESUME_FROM_CHECKPOINT
The path to a folder with a valid checkpoint for your
model. (default: None)
--hub_model_id HUB_MODEL_ID
The name of the repository to keep in sync with the
local `output_dir`. (default: None)
--hub_strategy {end,every_save,checkpoint,all_checkpoints}
The hub strategy to use when `--push_to_hub` is
activated. (default: every_save)
--hub_token HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--hub_private_repo [HUB_PRIVATE_REPO]
Whether the model repository is private or not.
(default: False)
--hub_always_push [HUB_ALWAYS_PUSH]
Unless `True`, the Trainer will skip pushes if the
previous one wasn't finished yet. (default: False)
--gradient_checkpointing [GRADIENT_CHECKPOINTING]
If True, use gradient checkpointing to save memory at
the expense of slower backward pass. (default: False)
--gradient_checkpointing_kwargs GRADIENT_CHECKPOINTING_KWARGS
Gradient checkpointing key word arguments such as
`use_reentrant`. Will be passed to
`torch.utils.checkpoint.checkpoint` through
`model.gradient_checkpointing_enable`. (default: None)
--include_inputs_for_metrics [INCLUDE_INPUTS_FOR_METRICS]
Whether or not the inputs will be passed to the
`compute_metrics` function. (default: False)
--eval_do_concat_batches [EVAL_DO_CONCAT_BATCHES]
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: True)
--no_eval_do_concat_batches
Whether to recursively concat
inputs/losses/labels/predictions across batches. If
`False`, will instead store them as lists, with each
batch kept separate. (default: False)
--fp16_backend {auto,apex,cpu_amp}
Deprecated. Use half_precision_backend instead
(default: auto)
--evaluation_strategy {no,steps,epoch}
Deprecated. Use `eval_strategy` instead (default:
None)
--push_to_hub_model_id PUSH_TO_HUB_MODEL_ID
The name of the repository to which push the
`Trainer`. (default: None)
--push_to_hub_organization PUSH_TO_HUB_ORGANIZATION
The name of the organization in with to which push the
`Trainer`. (default: None)
--push_to_hub_token PUSH_TO_HUB_TOKEN
The token to use to push to the Model Hub. (default:
None)
--mp_parameters MP_PARAMETERS
Used by the SageMaker launcher to send mp-specific
args. Ignored in Trainer (default: )
--auto_find_batch_size [AUTO_FIND_BATCH_SIZE]
Whether to automatically decrease the batch size in
half and rerun the training loop again each time a
CUDA Out-of-Memory was reached (default: False)
--full_determinism [FULL_DETERMINISM]
Whether to call enable_full_determinism instead of
set_seed for reproducibility in distributed training.
Important: this will negatively impact the
performance, so only use it for debugging. (default:
False)
--torchdynamo TORCHDYNAMO
This argument is deprecated, use
`--torch_compile_backend` instead. (default: None)
--ray_scope RAY_SCOPE
The scope to use when doing hyperparameter search with
Ray. By default, `"last"` will be used. Ray will then
use the last checkpoint of all trials, compare those,
and select the best one. However, other options are
also available. See the Ray documentation (https://doc
s.ray.io/en/latest/tune/api_docs/analysis.html#ray.tun
e.ExperimentAnalysis.get_best_trial) for more options.
(default: last)
--ddp_timeout DDP_TIMEOUT
Overrides the default timeout for distributed training
(value should be given in seconds). (default: 1800)
--torch_compile [TORCH_COMPILE]
If set to `True`, the model will be wrapped in
`torch.compile`. (default: False)
--torch_compile_backend TORCH_COMPILE_BACKEND
Which backend to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--torch_compile_mode TORCH_COMPILE_MODE
Which mode to use with `torch.compile`, passing one
will trigger a model compilation. (default: None)
--dispatch_batches DISPATCH_BATCHES
Deprecated. Pass {'dispatch_batches':VALUE} to
`accelerator_config`. (default: None)
--split_batches SPLIT_BATCHES
Deprecated. Pass {'split_batches':True} to
`accelerator_config`. (default: None)
--include_tokens_per_second [INCLUDE_TOKENS_PER_SECOND]
If set to `True`, the speed metrics will include `tgs`
(tokens per second per device). (default: False)
--include_num_input_tokens_seen [INCLUDE_NUM_INPUT_TOKENS_SEEN]
If set to `True`, will track the number of input
tokens seen throughout training. (May be slower in
distributed training) (default: False)
--neftune_noise_alpha NEFTUNE_NOISE_ALPHA
Activates neftune noise embeddings into the model.
NEFTune has been proven to drastically improve model
performances for instrcution fine-tuning. Check out
the original paper here:
https://arxiv.org/abs/2310.05914 and the original code
here: https://github.com/neelsjain/NEFTune. Only
supported for `PreTrainedModel` and `PeftModel`
classes. (default: None)
--optim_target_modules OPTIM_TARGET_MODULES
Target modules for the optimizer defined in the
`optim` argument. Only used for the GaLore optimizer
at the moment. (default: None)
--batch_eval_metrics [BATCH_EVAL_METRICS]
Break eval metrics calculation into batches to save
memory. (default: False)
--eval_on_start [EVAL_ON_START]
Whether to run through the entire `evaluation` step at
the very beginning of training as a sanity check.
(default: False)
--eval_use_gather_object [EVAL_USE_GATHER_OBJECT]
Whether to run recursively gather object in a nested
list/tuple/dictionary of objects from all devices.
(default: False)
--sortish_sampler [SORTISH_SAMPLER]
Whether to use SortishSampler or not. (default: False)
--predict_with_generate [PREDICT_WITH_GENERATE]
Whether to use generate to calculate generative
metrics (ROUGE, BLEU). (default: False)
--generation_max_length GENERATION_MAX_LENGTH
The `max_length` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`max_length` value of the model configuration.
(default: None)
--generation_num_beams GENERATION_NUM_BEAMS
The `num_beams` to use on each evaluation loop when
`predict_with_generate=True`. Will default to the
`num_beams` value of the model configuration.
(default: None)
--generation_config GENERATION_CONFIG
Model id, file path or url pointing to a
GenerationConfig json file, to use during prediction.
(default: None)
--use_badam [USE_BADAM]
Whether or not to use the BAdam optimizer. (default:
False)
--badam_mode {layer,ratio}
Whether to use layer-wise or ratio-wise BAdam
optimizer. (default: layer)
--badam_start_block BADAM_START_BLOCK
The starting block index for layer-wise BAdam.
(default: None)
--badam_switch_mode {ascending,descending,random,fixed}
the strategy of picking block to update for layer-wise
BAdam. (default: ascending)
--badam_switch_interval BADAM_SWITCH_INTERVAL
Number of steps to update the block for layer-wise
BAdam. Use -1 to disable the block update. (default:
50)
--badam_update_ratio BADAM_UPDATE_RATIO
The ratio of the update for ratio-wise BAdam.
(default: 0.05)
--badam_mask_mode {adjacent,scatter}
The mode of the mask for BAdam optimizer. `adjacent`
means that the trainable parameters are adjacent to
each other, `scatter` means that trainable parameters
are randomly choosed from the weight. (default:
adjacent)
--badam_verbose BADAM_VERBOSE
The verbosity level of BAdam optimizer. 0 for no
print, 1 for print the block prefix, 2 for print
trainable parameters. (default: 0)
--use_galore [USE_GALORE]
Whether or not to use the gradient low-Rank projection
(GaLore). (default: False)
--galore_target GALORE_TARGET
Name(s) of modules to apply GaLore. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--galore_rank GALORE_RANK
The rank of GaLore gradients. (default: 16)
--galore_update_interval GALORE_UPDATE_INTERVAL
Number of steps to update the GaLore projection.
(default: 200)
--galore_scale GALORE_SCALE
GaLore scaling coefficient. (default: 0.25)
--galore_proj_type {std,reverse_std,right,left,full}
Type of GaLore projection. (default: std)
--galore_layerwise [GALORE_LAYERWISE]
Whether or not to enable layer-wise update to further
save memory. (default: False)
--pref_beta PREF_BETA
The beta parameter in the preference loss. (default:
0.1)
--pref_ftx PREF_FTX The supervised fine-tuning loss coefficient in DPO
training. (default: 0.0)
--pref_loss {sigmoid,hinge,ipo,kto_pair,orpo,simpo}
The type of DPO loss to use. (default: sigmoid)
--dpo_label_smoothing DPO_LABEL_SMOOTHING
The robust DPO label smoothing parameter in cDPO that
should be between 0 and 0.5. (default: 0.0)
--kto_chosen_weight KTO_CHOSEN_WEIGHT
The weight factor of the desirable losses in KTO
training. (default: 1.0)
--kto_rejected_weight KTO_REJECTED_WEIGHT
The weight factor of the undesirable losses in KTO
training. (default: 1.0)
--simpo_gamma SIMPO_GAMMA
The target reward margin term in SimPO loss. (default:
0.5)
--ppo_buffer_size PPO_BUFFER_SIZE
The number of mini-batches to make experience buffer
in a PPO optimization step. (default: 1)
--ppo_epochs PPO_EPOCHS
The number of epochs to perform in a PPO optimization
step. (default: 4)
--ppo_score_norm [PPO_SCORE_NORM]
Use score normalization in PPO training. (default:
False)
--ppo_target PPO_TARGET
Target KL value for adaptive KL control in PPO
training. (default: 6.0)
--ppo_whiten_rewards [PPO_WHITEN_REWARDS]
Whiten the rewards before compute advantages in PPO
training. (default: False)
--ref_model REF_MODEL
Path to the reference model used for the PPO or DPO
training. (default: None)
--ref_model_adapters REF_MODEL_ADAPTERS
Path to the adapters of the reference model. (default:
None)
--ref_model_quantization_bit REF_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reference model.
(default: None)
--reward_model REWARD_MODEL
Path to the reward model used for the PPO training.
(default: None)
--reward_model_adapters REWARD_MODEL_ADAPTERS
Path to the adapters of the reward model. (default:
None)
--reward_model_quantization_bit REWARD_MODEL_QUANTIZATION_BIT
The number of bits to quantize the reward model.
(default: None)
--reward_model_type {lora,full,api}
The type of the reward model in PPO training. Lora
model only supports lora training. (default: lora)
--additional_target ADDITIONAL_TARGET
Name(s) of modules apart from LoRA layers to be set as
trainable and saved in the final checkpoint. Use
commas to separate multiple modules. (default: None)
--lora_alpha LORA_ALPHA
The scale factor for LoRA fine-tuning (default:
lora_rank * 2). (default: None)
--lora_dropout LORA_DROPOUT
Dropout rate for the LoRA fine-tuning. (default: 0.0)
--lora_rank LORA_RANK
The intrinsic dimension for LoRA fine-tuning.
(default: 8)
--lora_target LORA_TARGET
Name(s) of target modules to apply LoRA. Use commas to
separate multiple modules. Use `all` to specify all
the linear modules. (default: all)
--loraplus_lr_ratio LORAPLUS_LR_RATIO
LoRA plus learning rate ratio (lr_B / lr_A). (default:
None)
--loraplus_lr_embedding LORAPLUS_LR_EMBEDDING
LoRA plus learning rate for lora embedding layers.
(default: 1e-06)
--use_rslora [USE_RSLORA]
Whether or not to use the rank stabilization scaling
factor for LoRA layer. (default: False)
--use_dora [USE_DORA]
Whether or not to use the weight-decomposed lora
method (DoRA). (default: False)
--pissa_init [PISSA_INIT]
Whether or not to initialize a PiSSA adapter.
(default: False)
--pissa_iter PISSA_ITER
The number of iteration steps performed by FSVD in
PiSSA. Use -1 to disable it. (default: 16)
--pissa_convert [PISSA_CONVERT]
Whether or not to convert the PiSSA adapter to a
normal LoRA adapter. (default: False)
--create_new_adapter [CREATE_NEW_ADAPTER]
Whether or not to create a new adapter with randomly
initialized weight. (default: False)
--freeze_trainable_layers FREEZE_TRAINABLE_LAYERS
The number of trainable layers for freeze (partial-
parameter) fine-tuning. Positive numbers mean the last
n layers are set as trainable, negative numbers mean
the first n layers are set as trainable. (default: 2)
--freeze_trainable_modules FREEZE_TRAINABLE_MODULES
Name(s) of trainable modules for freeze (partial-
parameter) fine-tuning. Use commas to separate
multiple modules. Use `all` to specify all the
available modules. (default: all)
--freeze_extra_modules FREEZE_EXTRA_MODULES
Name(s) of modules apart from hidden layers to be set
as trainable for freeze (partial-parameter) fine-
tuning. Use commas to separate multiple modules.
(default: None)
--pure_bf16 [PURE_BF16]
Whether or not to train model in purely bf16 precision
(without AMP). (default: False)
--stage {pt,sft,rm,ppo,dpo,kto}
Which stage will be performed in training. (default:
sft)
--finetuning_type {lora,freeze,full}
Which fine-tuning method to use. (default: lora)
--use_llama_pro [USE_LLAMA_PRO]
Whether or not to make only the parameters in the
expanded blocks trainable. (default: False)
--use_adam_mini [USE_ADAM_MINI]
Whether or not to use the Adam-mini optimizer.
(default: False)
--freeze_vision_tower [FREEZE_VISION_TOWER]
Whether ot not to freeze vision tower in MLLM
training. (default: True)
--no_freeze_vision_tower
Whether ot not to freeze vision tower in MLLM
training. (default: False)
--train_mm_proj_only [TRAIN_MM_PROJ_ONLY]
Whether or not to train the multimodal projector for
MLLM only. (default: False)
--compute_accuracy [COMPUTE_ACCURACY]
Whether or not to compute the token-level accuracy at
evaluation. (default: False)
--plot_loss [PLOT_LOSS]
Whether or not to save the training loss curves.
(default: False)
--do_sample [DO_SAMPLE]
Whether or not to use sampling, use greedy decoding
otherwise. (default: True)
--no_do_sample Whether or not to use sampling, use greedy decoding
otherwise. (default: False)
--temperature TEMPERATURE
The value used to modulate the next token
probabilities. (default: 0.95)
--top_p TOP_P The smallest set of most probable tokens with
probabilities that add up to top_p or higher are kept.
(default: 0.7)
--top_k TOP_K The number of highest probability vocabulary tokens to
keep for top-k filtering. (default: 50)
--num_beams NUM_BEAMS
Number of beams for beam search. 1 means no beam
search. (default: 1)
--max_length MAX_LENGTH
The maximum length the generated tokens can have. It
can be overridden by max_new_tokens. (default: 1024)
--max_new_tokens MAX_NEW_TOKENS
The maximum numbers of tokens to generate, ignoring
the number of tokens in the prompt. (default: 1024)
--repetition_penalty REPETITION_PENALTY
The parameter for repetition penalty. 1.0 means no
penalty. (default: 1.0)
--length_penalty LENGTH_PENALTY
Exponential penalty to the length that is used with
beam-based generation. (default: 1.0)
--default_system DEFAULT_SYSTEM
Default system message to use in chat completion.
(default: None)