2024-06-15 17:54:33 +08:00
|
|
|
# Copyright 2024 the LlamaFactory team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
2024-06-08 05:20:54 +08:00
|
|
|
import os
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
2024-06-15 04:05:54 +08:00
|
|
|
from llamafactory.hparams import get_infer_args, get_train_args
|
2024-06-08 05:20:54 +08:00
|
|
|
from llamafactory.model import load_model, load_tokenizer
|
|
|
|
|
|
|
|
|
2024-06-10 21:24:15 +08:00
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
2024-06-08 05:20:54 +08:00
|
|
|
|
2024-06-10 21:24:15 +08:00
|
|
|
TRAIN_ARGS = {
|
2024-06-08 05:20:54 +08:00
|
|
|
"model_name_or_path": TINY_LLAMA,
|
|
|
|
"stage": "sft",
|
|
|
|
"do_train": True,
|
|
|
|
"finetuning_type": "freeze",
|
2024-06-10 21:24:15 +08:00
|
|
|
"dataset": "llamafactory/tiny-supervised-dataset",
|
2024-06-08 05:20:54 +08:00
|
|
|
"dataset_dir": "ONLINE",
|
|
|
|
"template": "llama3",
|
|
|
|
"cutoff_len": 1024,
|
|
|
|
"overwrite_cache": True,
|
|
|
|
"output_dir": "dummy_dir",
|
|
|
|
"overwrite_output_dir": True,
|
|
|
|
"fp16": True,
|
|
|
|
}
|
|
|
|
|
2024-06-15 04:05:54 +08:00
|
|
|
INFER_ARGS = {
|
|
|
|
"model_name_or_path": TINY_LLAMA,
|
|
|
|
"finetuning_type": "freeze",
|
|
|
|
"template": "llama3",
|
|
|
|
"infer_dtype": "float16",
|
|
|
|
}
|
2024-06-08 05:20:54 +08:00
|
|
|
|
2024-06-15 04:05:54 +08:00
|
|
|
|
|
|
|
def test_freeze_train_all_modules():
|
2024-06-10 21:24:15 +08:00
|
|
|
model_args, _, _, finetuning_args, _ = get_train_args({"freeze_trainable_layers": 1, **TRAIN_ARGS})
|
2024-06-08 05:20:54 +08:00
|
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
|
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
2024-06-15 19:51:20 +08:00
|
|
|
|
2024-06-08 05:20:54 +08:00
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if name.startswith("model.layers.1."):
|
|
|
|
assert param.requires_grad is True
|
|
|
|
assert param.dtype == torch.float32
|
|
|
|
else:
|
|
|
|
assert param.requires_grad is False
|
|
|
|
assert param.dtype == torch.float16
|
|
|
|
|
|
|
|
|
2024-06-15 04:05:54 +08:00
|
|
|
def test_freeze_train_extra_modules():
|
2024-06-08 05:20:54 +08:00
|
|
|
model_args, _, _, finetuning_args, _ = get_train_args(
|
2024-06-10 21:24:15 +08:00
|
|
|
{"freeze_trainable_layers": 1, "freeze_extra_modules": "embed_tokens,lm_head", **TRAIN_ARGS}
|
2024-06-08 05:20:54 +08:00
|
|
|
)
|
|
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
|
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
2024-06-15 19:51:20 +08:00
|
|
|
|
2024-06-08 05:20:54 +08:00
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]):
|
|
|
|
assert param.requires_grad is True
|
|
|
|
assert param.dtype == torch.float32
|
|
|
|
else:
|
|
|
|
assert param.requires_grad is False
|
|
|
|
assert param.dtype == torch.float16
|
2024-06-15 04:05:54 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_freeze_inference():
|
|
|
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
|
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
|
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
2024-06-15 19:51:20 +08:00
|
|
|
|
2024-06-15 04:05:54 +08:00
|
|
|
for param in model.parameters():
|
|
|
|
assert param.requires_grad is False
|
|
|
|
assert param.dtype == torch.float16
|