2024-06-16 01:08:12 +08:00
|
|
|
# Copyright 2024 the LlamaFactory team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from peft import LoraModel, PeftModel
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
|
|
|
|
from llamafactory.extras.misc import get_current_device
|
|
|
|
from llamafactory.hparams import get_infer_args, get_train_args
|
|
|
|
from llamafactory.model import load_model, load_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
|
|
|
|
TINY_LLAMA_PISSA = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa")
|
|
|
|
|
|
|
|
TRAIN_ARGS = {
|
|
|
|
"model_name_or_path": TINY_LLAMA,
|
|
|
|
"stage": "sft",
|
|
|
|
"do_train": True,
|
|
|
|
"finetuning_type": "lora",
|
|
|
|
"pissa_init": True,
|
|
|
|
"pissa_iter": -1,
|
|
|
|
"dataset": "llamafactory/tiny-supervised-dataset",
|
|
|
|
"dataset_dir": "ONLINE",
|
|
|
|
"template": "llama3",
|
|
|
|
"cutoff_len": 1024,
|
|
|
|
"overwrite_cache": True,
|
|
|
|
"output_dir": "dummy_dir",
|
|
|
|
"overwrite_output_dir": True,
|
|
|
|
"fp16": True,
|
|
|
|
}
|
|
|
|
|
|
|
|
INFER_ARGS = {
|
|
|
|
"model_name_or_path": TINY_LLAMA_PISSA,
|
|
|
|
"adapter_name_or_path": TINY_LLAMA_PISSA,
|
|
|
|
"adapter_folder": "pissa_init",
|
|
|
|
"finetuning_type": "lora",
|
|
|
|
"template": "llama3",
|
|
|
|
"infer_dtype": "float16",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"):
|
|
|
|
state_dict_a = model_a.state_dict()
|
|
|
|
state_dict_b = model_b.state_dict()
|
|
|
|
assert set(state_dict_a.keys()) == set(state_dict_b.keys())
|
|
|
|
for name in state_dict_a.keys():
|
2024-06-16 01:38:44 +08:00
|
|
|
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5)
|
2024-06-16 01:08:12 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_pissa_init():
|
|
|
|
model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS)
|
|
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
|
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
|
|
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device()
|
|
|
|
)
|
|
|
|
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init", is_trainable=True)
|
|
|
|
for param in filter(lambda p: p.requires_grad, ref_model.parameters()):
|
|
|
|
param.data = param.data.to(torch.float32)
|
|
|
|
|
|
|
|
compare_model(model, ref_model)
|
|
|
|
|
|
|
|
|
|
|
|
def test_pissa_inference():
|
|
|
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
|
|
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
|
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
|
|
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device()
|
|
|
|
)
|
|
|
|
ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init")
|
|
|
|
ref_model = ref_model.merge_and_unload()
|
|
|
|
compare_model(model, ref_model)
|