LLaMA-Factory-Mirror/tests/llamafy_baichuan2.py

87 lines
3.1 KiB
Python
Raw Normal View History

2023-09-08 22:59:41 +08:00
# coding=utf-8
# Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
2023-10-08 22:05:36 +08:00
# Usage: python llamafy_baichuan2.py --input_dir input --output_dir output --shard_size 10GB
2023-09-08 22:59:41 +08:00
# Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py
# Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
import os
import fire
import json
import torch
from collections import OrderedDict
2023-10-08 22:05:36 +08:00
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME
from typing import Any, Dict
2023-09-08 22:59:41 +08:00
2023-10-08 22:05:36 +08:00
CONFIG_NAME = "config.json"
2023-09-08 22:59:41 +08:00
2023-10-08 22:05:36 +08:00
def save_weight(
2023-09-08 22:59:41 +08:00
input_dir: str,
2023-10-08 22:05:36 +08:00
output_dir: str,
shard_size: str
2023-09-08 22:59:41 +08:00
):
2023-10-08 22:05:36 +08:00
baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
2023-09-09 13:50:29 +08:00
for filepath in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
baichuan2_state_dict.update(shard_weight)
2023-09-08 22:59:41 +08:00
2023-10-08 22:05:36 +08:00
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
2023-09-08 22:59:41 +08:00
for key, value in baichuan2_state_dict.items():
if "W_pack" in key:
2023-10-08 22:05:36 +08:00
proj_size = value.size(0) // 3
llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :]
llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size:2*proj_size, :]
llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2*proj_size:, :]
2023-09-08 22:59:41 +08:00
elif "lm_head" in key:
llama2_state_dict[key] = torch.nn.functional.normalize(value)
else:
llama2_state_dict[key] = value
2023-10-08 22:05:36 +08:00
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME)
for shard_file, shard in shards.items():
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
else:
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
2023-09-08 22:59:41 +08:00
2023-10-08 22:05:36 +08:00
def save_config(
input_dir: str,
output_dir: str
):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
llama2_config_dict: Dict[str, Any] = json.load(f)
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
llama2_config_dict.pop("auto_map", None)
llama2_config_dict.pop("tokenizer_class", None)
llama2_config_dict["model_type"] = "llama"
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
json.dump(llama2_config_dict, f, indent=2)
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_baichuan2(
input_dir: str,
output_dir: str,
shard_size: str
):
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:
raise print("Output dir already exists", e)
save_weight(input_dir, output_dir, shard_size)
save_config(input_dir, output_dir)
2023-09-08 22:59:41 +08:00
if __name__ == "__main__":
fire.Fire(llamafy_baichuan2)