77 lines
2.7 KiB
Python
77 lines
2.7 KiB
Python
|
import json
|
||
|
import datasets
|
||
|
from typing import Any, Dict, List
|
||
|
|
||
|
|
||
|
_DESCRIPTION = "UltraChat: Large-scale, Informative, and Diverse Multi-round Dialogue Data."
|
||
|
|
||
|
_CITATION = """\
|
||
|
@misc{UltraChat,
|
||
|
author = {Ding, Ning and Chen, Yulin and Xu, Bokai and Hu, Shengding and Qin, Yujia and Liu, Zhiyuan and Sun, Maosong and Zhou, Bowen},
|
||
|
title = {UltraChat: A Large-scale Auto-generated Multi-round Dialogue Data},
|
||
|
year = {2023},
|
||
|
publisher = {GitHub},
|
||
|
journal = {GitHub repository},
|
||
|
howpublished = {\\url{https://github.com/thunlp/ultrachat}},
|
||
|
}
|
||
|
"""
|
||
|
|
||
|
_HOMEPAGE = "https://huggingface.co/datasets/stingning/ultrachat"
|
||
|
_LICENSE = "cc-by-nc-4.0"
|
||
|
_BASE_DATA_URL = "https://huggingface.co/datasets/stingning/ultrachat/resolve/main/train_{idx}.jsonl"
|
||
|
|
||
|
|
||
|
class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
||
|
|
||
|
VERSION = datasets.Version("0.0.0")
|
||
|
|
||
|
def _info(self) -> datasets.DatasetInfo:
|
||
|
features = datasets.Features({
|
||
|
"instruction": datasets.Value("string"),
|
||
|
"output": datasets.Value("string"),
|
||
|
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
||
|
})
|
||
|
return datasets.DatasetInfo(
|
||
|
description=_DESCRIPTION,
|
||
|
features=features,
|
||
|
homepage=_HOMEPAGE,
|
||
|
license=_LICENSE,
|
||
|
citation=_CITATION
|
||
|
)
|
||
|
|
||
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
||
|
file_paths = [dl_manager.download(_BASE_DATA_URL.format(idx=idx)) for idx in range(9)] # multiple shards
|
||
|
return [
|
||
|
datasets.SplitGenerator(
|
||
|
name=datasets.Split.TRAIN,
|
||
|
gen_kwargs={
|
||
|
"filepaths": file_paths
|
||
|
}
|
||
|
)
|
||
|
]
|
||
|
|
||
|
def _generate_examples(self, filepaths: List[str]) -> Dict[int, Dict[str, Any]]: # generate multi-turn chat for ChatGLM
|
||
|
for filepath in filepaths:
|
||
|
with open(filepath, "r", encoding="utf-8") as f:
|
||
|
for row in f:
|
||
|
try:
|
||
|
data = json.loads(row)
|
||
|
except:
|
||
|
continue
|
||
|
key = data["id"]
|
||
|
content = data["data"]
|
||
|
if len(content) % 2 == 1:
|
||
|
content.pop(-1)
|
||
|
if len(content) < 2:
|
||
|
continue
|
||
|
|
||
|
query = content[-2]
|
||
|
response = content[-1]
|
||
|
history = [[content[2*i], content[2*i+1]] for i in range(len(content) // 2 - 1)]
|
||
|
|
||
|
yield key, {
|
||
|
"instruction": query,
|
||
|
"output": response,
|
||
|
"history": history
|
||
|
}
|