LLaMA-Factory-Mirror/README.md

30 lines
864 B
Markdown
Raw Normal View History

2023-05-28 18:09:04 +08:00
# LLaMA Efficient Tuning
1. Download the weights of the LLaMA models.
2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
```python
python convert_llama_weights_to_hf.py \
--input_dir path_to_llama_weights --model_size 7B --output_dir llama_7b
```
3. Fine-tune the LLaMA models.
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
--model_name_or_path llama_7b \
--do_train \
--dataset alpaca_gpt4_zh \
--finetuning_type lora \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--fp16
```