30 lines
864 B
Markdown
30 lines
864 B
Markdown
|
# LLaMA Efficient Tuning
|
||
|
|
||
|
1. Download the weights of the LLaMA models.
|
||
|
2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
|
||
|
|
||
|
```python
|
||
|
python convert_llama_weights_to_hf.py \
|
||
|
--input_dir path_to_llama_weights --model_size 7B --output_dir llama_7b
|
||
|
```
|
||
|
|
||
|
3. Fine-tune the LLaMA models.
|
||
|
|
||
|
```bash
|
||
|
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
|
||
|
--model_name_or_path llama_7b \
|
||
|
--do_train \
|
||
|
--dataset alpaca_gpt4_zh \
|
||
|
--finetuning_type lora \
|
||
|
--output_dir path_to_sft_checkpoint \
|
||
|
--overwrite_cache \
|
||
|
--per_device_train_batch_size 2 \
|
||
|
--gradient_accumulation_steps 2 \
|
||
|
--lr_scheduler_type cosine \
|
||
|
--logging_steps 10 \
|
||
|
--save_steps 100 \
|
||
|
--learning_rate 1e-5 \
|
||
|
--num_train_epochs 1.0 \
|
||
|
--fp16
|
||
|
```
|