2023-09-23 21:10:17 +08:00
|
|
|
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
|
|
|
|
import datasets
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
_CITATION = """\
|
|
|
|
@article{li2023cmmlu,
|
|
|
|
title={CMMLU: Measuring massive multitask language understanding in Chinese},
|
|
|
|
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
|
|
|
|
journal={arXiv preprint arXiv:2306.09212},
|
|
|
|
year={2023}
|
|
|
|
}
|
|
|
|
"""
|
|
|
|
|
|
|
|
_DESCRIPTION = """\
|
|
|
|
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
|
|
|
|
"""
|
|
|
|
|
|
|
|
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
|
|
|
|
|
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
|
|
|
|
|
|
|
|
_URL = "cmmlu.zip"
|
|
|
|
|
|
|
|
task_list = [
|
2024-05-05 00:53:07 +08:00
|
|
|
"agronomy",
|
|
|
|
"anatomy",
|
|
|
|
"ancient_chinese",
|
|
|
|
"arts",
|
|
|
|
"astronomy",
|
|
|
|
"business_ethics",
|
|
|
|
"chinese_civil_service_exam",
|
|
|
|
"chinese_driving_rule",
|
|
|
|
"chinese_food_culture",
|
|
|
|
"chinese_foreign_policy",
|
|
|
|
"chinese_history",
|
|
|
|
"chinese_literature",
|
|
|
|
"chinese_teacher_qualification",
|
|
|
|
"clinical_knowledge",
|
|
|
|
"college_actuarial_science",
|
|
|
|
"college_education",
|
|
|
|
"college_engineering_hydrology",
|
|
|
|
"college_law",
|
|
|
|
"college_mathematics",
|
|
|
|
"college_medical_statistics",
|
|
|
|
"college_medicine",
|
|
|
|
"computer_science",
|
|
|
|
"computer_security",
|
|
|
|
"conceptual_physics",
|
|
|
|
"construction_project_management",
|
|
|
|
"economics",
|
|
|
|
"education",
|
|
|
|
"electrical_engineering",
|
|
|
|
"elementary_chinese",
|
|
|
|
"elementary_commonsense",
|
|
|
|
"elementary_information_and_technology",
|
|
|
|
"elementary_mathematics",
|
|
|
|
"ethnology",
|
|
|
|
"food_science",
|
|
|
|
"genetics",
|
|
|
|
"global_facts",
|
|
|
|
"high_school_biology",
|
|
|
|
"high_school_chemistry",
|
|
|
|
"high_school_geography",
|
|
|
|
"high_school_mathematics",
|
|
|
|
"high_school_physics",
|
|
|
|
"high_school_politics",
|
|
|
|
"human_sexuality",
|
|
|
|
"international_law",
|
|
|
|
"journalism",
|
|
|
|
"jurisprudence",
|
|
|
|
"legal_and_moral_basis",
|
|
|
|
"logical",
|
|
|
|
"machine_learning",
|
|
|
|
"management",
|
|
|
|
"marketing",
|
|
|
|
"marxist_theory",
|
|
|
|
"modern_chinese",
|
|
|
|
"nutrition",
|
|
|
|
"philosophy",
|
|
|
|
"professional_accounting",
|
|
|
|
"professional_law",
|
|
|
|
"professional_medicine",
|
|
|
|
"professional_psychology",
|
|
|
|
"public_relations",
|
|
|
|
"security_study",
|
|
|
|
"sociology",
|
|
|
|
"sports_science",
|
|
|
|
"traditional_chinese_medicine",
|
|
|
|
"virology",
|
|
|
|
"world_history",
|
|
|
|
"world_religions",
|
2023-09-23 21:10:17 +08:00
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class CMMLUConfig(datasets.BuilderConfig):
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class CMMLU(datasets.GeneratorBasedBuilder):
|
|
|
|
BUILDER_CONFIGS = [
|
|
|
|
CMMLUConfig(
|
|
|
|
name=task_name,
|
|
|
|
)
|
|
|
|
for task_name in task_list
|
|
|
|
]
|
|
|
|
|
|
|
|
def _info(self):
|
|
|
|
features = datasets.Features(
|
|
|
|
{
|
|
|
|
"question": datasets.Value("string"),
|
|
|
|
"A": datasets.Value("string"),
|
|
|
|
"B": datasets.Value("string"),
|
|
|
|
"C": datasets.Value("string"),
|
|
|
|
"D": datasets.Value("string"),
|
|
|
|
"answer": datasets.Value("string"),
|
|
|
|
}
|
|
|
|
)
|
|
|
|
return datasets.DatasetInfo(
|
|
|
|
description=_DESCRIPTION,
|
|
|
|
features=features,
|
|
|
|
homepage=_HOMEPAGE,
|
|
|
|
license=_LICENSE,
|
|
|
|
citation=_CITATION,
|
|
|
|
)
|
|
|
|
|
|
|
|
def _split_generators(self, dl_manager):
|
|
|
|
data_dir = dl_manager.download_and_extract(_URL)
|
|
|
|
task_name = self.config.name
|
|
|
|
return [
|
|
|
|
datasets.SplitGenerator(
|
|
|
|
name=datasets.Split.TEST,
|
|
|
|
gen_kwargs={
|
|
|
|
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
|
|
|
|
},
|
|
|
|
),
|
|
|
|
datasets.SplitGenerator(
|
|
|
|
name=datasets.Split.TRAIN,
|
|
|
|
gen_kwargs={
|
|
|
|
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
|
|
|
|
},
|
|
|
|
),
|
|
|
|
]
|
|
|
|
|
|
|
|
def _generate_examples(self, filepath):
|
|
|
|
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
|
|
|
|
for i, instance in enumerate(df.to_dict(orient="records")):
|
2023-09-28 14:39:16 +08:00
|
|
|
question = instance.pop("Question", "")
|
|
|
|
answer = instance.pop("Answer", "")
|
|
|
|
instance["question"] = question
|
|
|
|
instance["answer"] = answer
|
2023-09-23 21:10:17 +08:00
|
|
|
yield i, instance
|