53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
|
# coding=utf-8
|
||
|
# Calculates the distribution of the input lengths in the dataset.
|
||
|
# Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
|
||
|
|
||
|
from collections import defaultdict
|
||
|
from typing import Optional
|
||
|
|
||
|
import fire
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from llmtuner.data import get_dataset
|
||
|
from llmtuner.hparams import get_train_args
|
||
|
from llmtuner.model import load_model_and_tokenizer
|
||
|
|
||
|
|
||
|
def length_cdf(
|
||
|
model_name_or_path: str,
|
||
|
dataset: Optional[str] = "alpaca_en",
|
||
|
dataset_dir: Optional[str] = "data",
|
||
|
template: Optional[str] = "default",
|
||
|
interval: Optional[int] = 1000,
|
||
|
):
|
||
|
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||
|
dict(
|
||
|
stage="sft",
|
||
|
model_name_or_path=model_name_or_path,
|
||
|
dataset=dataset,
|
||
|
dataset_dir=dataset_dir,
|
||
|
template=template,
|
||
|
cutoff_len=1_000_000,
|
||
|
output_dir="dummy_dir",
|
||
|
overwrite_cache=True,
|
||
|
)
|
||
|
)
|
||
|
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
|
||
|
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||
|
total_num = len(trainset)
|
||
|
length_dict = defaultdict(int)
|
||
|
for sample in tqdm(trainset["input_ids"]):
|
||
|
length_dict[len(sample) // interval * interval] += 1
|
||
|
|
||
|
length_tuples = list(length_dict.items())
|
||
|
length_tuples.sort()
|
||
|
count_accu, prob_accu = 0, 0
|
||
|
for length, count in length_tuples:
|
||
|
count_accu += count
|
||
|
prob_accu += count / total_num * 100
|
||
|
print("{:d} ({:.2f}%) samples have length < {}.".format(count_accu, prob_accu, length + interval))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
fire.Fire(length_cdf)
|