2024-05-17 01:02:00 +08:00
|
|
|
### model
|
2024-05-06 22:51:02 +08:00
|
|
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
|
|
|
|
2024-05-17 01:02:00 +08:00
|
|
|
### method
|
2024-05-06 22:51:02 +08:00
|
|
|
stage: sft
|
|
|
|
do_train: true
|
|
|
|
finetuning_type: full
|
|
|
|
use_galore: true
|
|
|
|
galore_layerwise: true
|
|
|
|
galore_target: mlp,self_attn
|
|
|
|
galore_rank: 128
|
|
|
|
galore_scale: 2.0
|
|
|
|
|
2024-05-17 01:02:00 +08:00
|
|
|
### dataset
|
2024-05-18 03:44:56 +08:00
|
|
|
dataset: identity,alpaca_en_demo
|
2024-05-06 22:51:02 +08:00
|
|
|
template: llama3
|
|
|
|
cutoff_len: 1024
|
|
|
|
max_samples: 1000
|
|
|
|
overwrite_cache: true
|
|
|
|
preprocessing_num_workers: 16
|
|
|
|
|
2024-05-17 01:02:00 +08:00
|
|
|
### output
|
2024-05-06 22:51:02 +08:00
|
|
|
output_dir: saves/llama3-8b/full/sft
|
|
|
|
logging_steps: 10
|
|
|
|
save_steps: 500
|
|
|
|
plot_loss: true
|
|
|
|
overwrite_output_dir: true
|
|
|
|
|
2024-05-17 01:02:00 +08:00
|
|
|
### train
|
2024-05-06 22:51:02 +08:00
|
|
|
per_device_train_batch_size: 1
|
|
|
|
gradient_accumulation_steps: 1
|
2024-07-24 16:42:51 +08:00
|
|
|
learning_rate: 1.0e-5
|
2024-05-06 22:51:02 +08:00
|
|
|
num_train_epochs: 3.0
|
|
|
|
lr_scheduler_type: cosine
|
2024-06-03 19:12:29 +08:00
|
|
|
warmup_ratio: 0.1
|
2024-05-06 22:51:02 +08:00
|
|
|
pure_bf16: true
|
|
|
|
|
2024-05-17 01:02:00 +08:00
|
|
|
### eval
|
2024-05-13 20:39:36 +08:00
|
|
|
val_size: 0.1
|
2024-05-06 22:51:02 +08:00
|
|
|
per_device_eval_batch_size: 1
|
2024-06-06 01:49:20 +08:00
|
|
|
eval_strategy: steps
|
2024-05-06 22:51:02 +08:00
|
|
|
eval_steps: 500
|