This commit is contained in:
hiyouga 2023-12-03 11:33:12 +08:00
parent 5b78e269b6
commit 03d05991f8
2 changed files with 4 additions and 15 deletions

View File

@ -68,18 +68,6 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param
def get_current_device() -> str:
import accelerate
if accelerate.utils.is_xpu_available():
return "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif accelerate.utils.is_npu_available():
return "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif torch.cuda.is_available():
return "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
return "cpu"
def get_logits_processor() -> "LogitsProcessorList":
r"""
Gets logits processor that removes NaN and Inf logits.

View File

@ -1,3 +1,4 @@
import os
import math
import torch
from types import MethodType
@ -22,7 +23,7 @@ except ImportError: # https://github.com/huggingface/transformers/releases/tag/v
from transformers.deepspeed import is_deepspeed_zero3_enabled
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import count_parameters, get_current_device, infer_optim_dtype, try_download_model_from_ms
from llmtuner.extras.misc import count_parameters, infer_optim_dtype, try_download_model_from_ms
from llmtuner.extras.packages import is_flash_attn2_available
from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.hparams import FinetuningArguments
@ -150,7 +151,7 @@ def load_model_and_tokenizer(
if getattr(config, "quantization_config", None):
if model_args.quantization_bit is not None: # remove bnb quantization
model_args.quantization_bit = None
config_kwargs["device_map"] = {"": get_current_device()}
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
quantization_config = getattr(config, "quantization_config", None)
logger.info("Loading {}-bit quantized model.".format(quantization_config.get("bits", -1)))
@ -172,7 +173,7 @@ def load_model_and_tokenizer(
bnb_4bit_quant_type=model_args.quantization_type
)
config_kwargs["device_map"] = {"": get_current_device()}
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
# Load pre-trained models (without valuehead)