fix Baichuan-13B

This commit is contained in:
hiyouga 2023-07-13 23:08:45 +08:00
parent 8cd76ef3c3
commit 08439d29b2
11 changed files with 28 additions and 87 deletions

View File

@ -9,7 +9,7 @@
## Changelog ## Changelog
[23/07/11] Now we support training the **Baichuan-13B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-13B-Base` and `--lora_target W_pack` arguments to use the Baichuan-13B model. Remember to use `--prompt_template baichuan` argument when you are using the Baichuan-13B-Chat model. [23/07/11] Now we support training the **Baichuan-13B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-13B-Base`, `--padding_side right` and `--lora_target W_pack` arguments to train the Baichuan-13B model. Remember to use `--prompt_template baichuan` argument when you are using the Baichuan-13B-Chat model.
[23/07/09] Now we release [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested. [23/07/09] Now we release [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested.

View File

@ -94,6 +94,9 @@
"history": "history" "history": "history"
} }
}, },
"novel_tokens512_50k": {
"hf_hub_url": "zxbsmk/webnovel_cn"
},
"example": { "example": {
"script_url": "example_dataset", "script_url": "example_dataset",
"columns": { "columns": {
@ -131,7 +134,7 @@
} }
}, },
"oaast_rm_zh": { "oaast_rm_zh": {
"file_name": "", "file_name": "oaast_rm_zh.json",
"file_sha1": "1065af1f3784dd61be5e79713a35f427b713a232", "file_sha1": "1065af1f3784dd61be5e79713a35f427b713a232",
"columns": { "columns": {
"prompt": "instruction", "prompt": "instruction",
@ -149,8 +152,5 @@
"response": "", "response": "",
"history": "" "history": ""
} }
},
"novel_tokens512_50k": {
"hf_hub_url": "zxbsmk/webnovel_cn"
} }
} }

View File

@ -8,9 +8,8 @@ import math
from torch.optim import AdamW from torch.optim import AdamW
from transformers.optimization import get_scheduler from transformers.optimization import get_scheduler
from trl import PPOConfig from trl import PPOConfig
from transformers import DataCollatorForSeq2Seq
from utils import ( from utils import (
DynamicDataCollatorWithPadding,
PPOPeftTrainer, PPOPeftTrainer,
LogCallback, LogCallback,
load_pretrained, load_pretrained,
@ -28,7 +27,10 @@ def main():
dataset = prepare_data(model_args, data_args) dataset = prepare_data(model_args, data_args)
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="ppo") model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="ppo")
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="ppo") dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="ppo")
data_collator = DynamicDataCollatorWithPadding(tokenizer) data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
label_pad_token_id=tokenizer.pad_token_id
)
ppo_config = PPOConfig( ppo_config = PPOConfig(
model_name=model_args.model_name_or_path, model_name=model_args.model_name_or_path,

View File

@ -5,6 +5,8 @@
import math import math
from transformers import DataCollatorForSeq2Seq
from utils.other import IGNORE_INDEX
from utils import ( from utils import (
DynamicDataCollatorWithPadding, DynamicDataCollatorWithPadding,
@ -25,7 +27,10 @@ def main():
dataset = prepare_data(model_args, data_args) dataset = prepare_data(model_args, data_args)
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="pt") model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="pt")
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="pt") dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="pt")
data_collator = DynamicDataCollatorWithPadding(tokenizer, data_args.ignore_pad_token_for_loss) data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
# Split the dataset # Split the dataset
if training_args.do_train: if training_args.do_train:

View File

@ -17,6 +17,7 @@ from utils import (
plot_loss plot_loss
) )
def main(): def main():
# Prepare pretrained model and dataset # Prepare pretrained model and dataset

View File

@ -4,8 +4,9 @@
# https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py # https://github.com/huggingface/transformers/blob/v4.29.2/examples/pytorch/summarization/run_summarization.py
from transformers import DataCollatorForSeq2Seq
from utils.other import IGNORE_INDEX
from utils import ( from utils import (
DynamicDataCollatorWithPadding,
Seq2SeqPeftTrainer, Seq2SeqPeftTrainer,
ComputeMetrics, ComputeMetrics,
LogCallback, LogCallback,
@ -25,9 +26,9 @@ def main():
dataset = prepare_data(model_args, data_args) dataset = prepare_data(model_args, data_args)
model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="sft") model, tokenizer = load_pretrained(model_args, finetuning_args, training_args.do_train, stage="sft")
dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="sft") dataset = preprocess_data(dataset, tokenizer, data_args, training_args, stage="sft")
data_collator = DynamicDataCollatorWithPadding( data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer, tokenizer=tokenizer,
ignore_pad_token_for_loss=(data_args.ignore_pad_token_for_loss and not training_args.predict_with_generate) label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
) )
# Override the decoding parameters of Seq2SeqTrainer # Override the decoding parameters of Seq2SeqTrainer

View File

@ -6,8 +6,6 @@ from .common import (
preprocess_data preprocess_data
) )
from .data_collator import DynamicDataCollatorWithPadding
from .peft_trainer import PeftTrainer, LogCallback from .peft_trainer import PeftTrainer, LogCallback
from .seq2seq import ComputeMetrics, Seq2SeqPeftTrainer from .seq2seq import ComputeMetrics, Seq2SeqPeftTrainer

View File

@ -165,7 +165,7 @@ def load_pretrained(
tokenizer = AutoTokenizer.from_pretrained( tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer, use_fast=model_args.use_fast_tokenizer,
padding_side="left", padding_side=model_args.padding_side,
**config_kwargs **config_kwargs
) )
if tokenizer.pad_token_id is None or tokenizer.pad_token_id == 64000: # 64000 for baichuan model (older version) if tokenizer.pad_token_id is None or tokenizer.pad_token_id == 64000: # 64000 for baichuan model (older version)

View File

@ -47,6 +47,10 @@ class ModelArguments:
default="main", default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}
) )
padding_side: Optional[Literal["left", "right"]] = field(
default="left",
metadata={"help": "The side on which the model should have padding applied."}
)
quantization_bit: Optional[int] = field( quantization_bit: Optional[int] = field(
default=None, default=None,
metadata={"help": "The number of bits to quantize the model."} metadata={"help": "The number of bits to quantize the model."}

View File

@ -1,70 +0,0 @@
import torch
from typing import Dict, Optional, Sequence, Union
from transformers import DataCollatorWithPadding, BatchEncoding
from transformers.tokenization_utils import PreTrainedTokenizer
from .other import IGNORE_INDEX
class DynamicDataCollatorWithPadding(DataCollatorWithPadding):
r"""
Inherits DataCollatorWithPadding. It is capable of dynamically padding for batched data.
"""
def __init__(
self,
tokenizer: PreTrainedTokenizer,
ignore_pad_token_for_loss: Optional[bool] = False
):
super().__init__(tokenizer, padding=True)
self.label_pad_token_id = IGNORE_INDEX if ignore_pad_token_for_loss else tokenizer.pad_token_id
def get_attention_masks(self, input_ids: torch.Tensor, device: torch.device) -> torch.Tensor:
r"""
Generates attention masks for left-padded sequences.
"""
batch_size, seq_length = input_ids.size()
attention_mask = torch.ones((batch_size, seq_length), device=device)
for i, seq in enumerate(input_ids):
attention_mask[i, :(seq != self.tokenizer.pad_token_id).nonzero()[0].item()] = 0 # padding
attention_mask = attention_mask.bool()
return attention_mask
def __call__(self, features: Sequence[Dict[str, Union[torch.Tensor, Sequence[int]]]]) -> BatchEncoding:
r"""
Pads batched data to the longest sequence in the batch.
We adopt left-padding in both training and evaluation.
"""
if isinstance(features[0]["input_ids"], torch.Tensor):
input_ids = [feature["input_ids"].clone().detach().flip(0) for feature in features]
else:
input_ids = [torch.tensor(feature["input_ids"]).flip(0) for feature in features]
if "labels" in features[0]:
if isinstance(features[0]["labels"], torch.Tensor):
labels = [feature["labels"].clone().detach().flip(0) for feature in features]
else:
labels = [torch.tensor(feature["labels"]).flip(0) for feature in features]
input_ids = input_ids + labels # pad them to the same length
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.tokenizer.pad_token_id
).flip(-1)
batch = {}
if "labels" in features[0]:
input_ids, labels = input_ids.split(len(features), dim=0)
labels = torch.where(labels != self.tokenizer.pad_token_id, labels, self.label_pad_token_id)
batch["labels"] = labels
batch["input_ids"] = input_ids
batch["attention_mask"] = self.get_attention_masks(input_ids, device=input_ids.device)
return BatchEncoding(batch)

View File

@ -2,7 +2,7 @@ import torch
import numpy as np import numpy as np
from typing import Dict, Sequence, Tuple, Union from typing import Dict, Sequence, Tuple, Union
from .data_collator import DynamicDataCollatorWithPadding from transformers import DataCollatorWithPadding
from .peft_trainer import PeftTrainer from .peft_trainer import PeftTrainer
@ -16,7 +16,7 @@ def compute_accuracy(eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]])
return {"accuracy": (preds[0] > preds[1]).sum() / len(preds[0])} return {"accuracy": (preds[0] > preds[1]).sum() / len(preds[0])}
class PairwiseDataCollatorWithPadding(DynamicDataCollatorWithPadding): class PairwiseDataCollatorWithPadding(DataCollatorWithPadding):
r""" r"""
Data collator for pairwise data. Data collator for pairwise data.
""" """