update readme

This commit is contained in:
hiyouga 2024-04-02 20:37:37 +08:00
parent 949e5fe638
commit 11a6c1bad6
4 changed files with 71 additions and 15 deletions

View File

@ -245,8 +245,6 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
</details>
Please refer to [data/README.md](data/README.md) for details.
Some datasets require confirmation before using them, so we recommend logging in with your Hugging Face account using these commands.
```bash
@ -366,8 +364,18 @@ docker compose -f ./docker-compose.yml up -d
See [examples](examples) for usage.
> [!TIP]
> Use `python src/train_bash.py -h` to display arguments description.
Use `python src/train_bash.py -h` to display arguments description.
### Deploy with OpenAI-style API and vLLM
```bash
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
--model_name_or_path path_to_model \
--adapter_name_or_path path_to_lora_adapter \
--template default \
--finetuning_type lora \
--infer_backend vllm
```
### Use ModelScope Hub
@ -381,6 +389,8 @@ Train the model by specifying a model ID of the ModelScope Hub as the `--model_n
## Projects using LLaMA Factory
If you have a project that should be incorporated, please contact via email or create a pull request.
<details><summary>Click to show</summary>
1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
@ -414,9 +424,6 @@ Train the model by specifying a model ID of the ModelScope Hub as the `--model_n
</details>
> [!TIP]
> If you have a project that should be incorporated, please contact via email or create a pull request.
## License
This repository is licensed under the [Apache-2.0 License](LICENSE).

View File

@ -245,8 +245,6 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
</details>
使用方法请参考 [data/README_zh.md](data/README_zh.md) 文件。
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
```bash
@ -337,7 +335,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_web.py
```bash
docker build -f ./Dockerfile -t llama-factory:latest .
docker run --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
@ -367,8 +364,18 @@ docker compose -f ./docker-compose.yml up -d
使用方法请参考 [examples](examples) 文件夹。
> [!TIP]
> 使用 `python src/train_bash.py -h` 查看参数文档。
使用 `python src/train_bash.py -h` 查看参数文档。
### 使用 OpenAI 风格 API 和 vLLM 部署
```bash
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \
--model_name_or_path path_to_model \
--adapter_name_or_path path_to_lora_adapter \
--template default \
--finetuning_type lora \
--infer_backend vllm
```
### 使用魔搭社区
@ -382,6 +389,8 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
## 使用了 LLaMA Factory 的项目
如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。
<details><summary>点击显示</summary>
1. Wang et al. ESRL: Efficient Sampling-based Reinforcement Learning for Sequence Generation. 2023. [[arxiv]](https://arxiv.org/abs/2308.02223)
@ -415,9 +424,6 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
</details>
> [!TIP]
> 如果您有项目希望添加至上述列表,请通过邮件联系或者创建一个 PR。
## 协议
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。

43
examples/README.md Normal file
View File

@ -0,0 +1,43 @@
We provide diverse examples about fine-tuning LLMs.
```
examples/
├── lora_single_gpu/
│ ├── pt.sh: Pre-training
│ ├── sft.sh: Supervised fine-tuning
│ ├── reward.sh: Reward modeling
│ ├── ppo.sh: PPO training
│ ├── dpo.sh: DPO training
│ ├── orpo.sh: ORPO training
│ ├── prepare.sh: Save tokenized dataset
│ └── predict.sh: Batch prediction
├── qlora_single_gpu/
│ ├── bitsandbytes.sh
│ ├── gptq.sh
│ ├── awq.sh
│ └── aqlm.sh
├── lora_multi_gpu/
│ ├── single_node.sh
│ └── multi_node.sh
├── full_multi_gpu/
│ ├── single_node.sh
│ └── multi_node.sh
├── merge_lora/
│ ├── merge.sh
│ └── quantize.sh
├── inference/
│ ├── cli_demo.sh
│ ├── api_demo.sh
│ ├── web_demo.sh
│ └── evaluate.sh
└── extras/
├── galore/
│ └── sft.sh
├── loraplus/
│ └── sft.sh
├── llama_pro/
│ ├── expand.sh
│ └── sft.sh
└── fsdp_qlora/
└── sft.sh
```