fix resize vocab at inference #3022
This commit is contained in:
parent
ce77d98872
commit
148bda353f
|
@ -15,7 +15,7 @@ from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq
|
|||
from llmtuner.data import get_dataset
|
||||
from llmtuner.extras.constants import IGNORE_INDEX
|
||||
from llmtuner.hparams import get_train_args
|
||||
from llmtuner.model import load_model_and_tokenizer
|
||||
from llmtuner.model import load_tokenizer
|
||||
|
||||
|
||||
BASE_LR = 3e-4 # 1.5e-4 for 30B-70B models
|
||||
|
@ -32,7 +32,7 @@ def calculate_lr(
|
|||
cutoff_len: Optional[int] = 1024, # i.e. maximum input length during training
|
||||
is_mistral: Optional[bool] = False, # mistral model uses a smaller learning rate,
|
||||
):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
model_args, data_args, training_args, _, _ = get_train_args(
|
||||
dict(
|
||||
stage=stage,
|
||||
model_name_or_path=model_name_or_path,
|
||||
|
@ -44,8 +44,8 @@ def calculate_lr(
|
|||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
|
||||
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage=stage)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage)
|
||||
if stage == "pt":
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
elif stage == "sft":
|
||||
|
|
|
@ -10,7 +10,7 @@ from tqdm import tqdm
|
|||
|
||||
from llmtuner.data import get_dataset
|
||||
from llmtuner.hparams import get_train_args
|
||||
from llmtuner.model import load_model_and_tokenizer
|
||||
from llmtuner.model import load_tokenizer
|
||||
|
||||
|
||||
def length_cdf(
|
||||
|
@ -20,7 +20,7 @@ def length_cdf(
|
|||
template: Optional[str] = "default",
|
||||
interval: Optional[int] = 1000,
|
||||
):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
|
||||
model_args, data_args, training_args, _, _ = get_train_args(
|
||||
dict(
|
||||
stage="sft",
|
||||
model_name_or_path=model_name_or_path,
|
||||
|
@ -32,7 +32,7 @@ def length_cdf(
|
|||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||||
total_num = len(trainset)
|
||||
length_dict = defaultdict(int)
|
||||
|
|
2
setup.py
2
setup.py
|
@ -20,7 +20,7 @@ def get_requires():
|
|||
|
||||
|
||||
extra_require = {
|
||||
"deepspeed": ["deepspeed"],
|
||||
"deepspeed": ["deepspeed>=0.10.0"],
|
||||
"metrics": ["nltk", "jieba", "rouge-chinese"],
|
||||
"unsloth": ["torch==2.2.0", "unsloth[cu121-ampere-torch220]"],
|
||||
"vllm": ["vllm>=0.3.3"],
|
||||
|
|
|
@ -9,7 +9,7 @@ from transformers import GenerationConfig, TextIteratorStreamer
|
|||
|
||||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.misc import get_logits_processor
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .base_engine import BaseEngine, Response
|
||||
|
||||
|
||||
|
@ -30,11 +30,12 @@ class HuggingfaceEngine(BaseEngine):
|
|||
generating_args: "GeneratingArguments",
|
||||
) -> None:
|
||||
self.can_generate = finetuning_args.stage == "sft"
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(
|
||||
model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
self.tokenizer = load_tokenizer(model_args)
|
||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
||||
self.model = load_model(
|
||||
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||
)
|
||||
self.generating_args = generating_args.to_dict()
|
||||
|
||||
@staticmethod
|
||||
|
|
|
@ -14,16 +14,17 @@ from transformers.utils import cached_file
|
|||
from ..data import get_template_and_fix_tokenizer
|
||||
from ..extras.constants import CHOICES, SUBJECTS
|
||||
from ..hparams import get_eval_args
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .template import get_eval_template
|
||||
|
||||
|
||||
class Evaluator:
|
||||
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
|
||||
self.model_args, self.data_args, self.eval_args, finetuning_args = get_eval_args(args)
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(self.model_args, finetuning_args)
|
||||
self.tokenizer = load_tokenizer(self.model_args)
|
||||
self.tokenizer.padding_side = "right" # avoid overflow issue in batched inference for llama2
|
||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
|
||||
self.model = load_model(self.tokenizer, self.model_args, finetuning_args)
|
||||
self.eval_template = get_eval_template(self.eval_args.lang)
|
||||
self.choice_inputs = [
|
||||
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
from .loader import load_model, load_model_and_tokenizer, load_tokenizer
|
||||
from .loader import load_model, load_tokenizer
|
||||
from .utils import find_all_linear_modules, load_valuehead_params
|
||||
|
||||
|
||||
__all__ = [
|
||||
"load_model",
|
||||
"load_model_and_tokenizer",
|
||||
"load_tokenizer",
|
||||
"load_valuehead_params",
|
||||
"find_all_linear_modules",
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import TYPE_CHECKING, Any, Dict, Tuple
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
@ -133,17 +133,3 @@ def load_model(
|
|||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_model_and_tokenizer(
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> Tuple["PreTrainedModel", "PreTrainedTokenizer"]:
|
||||
r"""
|
||||
Loads pretrained model and tokenizer.
|
||||
"""
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, is_trainable, add_valuehead)
|
||||
return model, tokenizer
|
||||
|
|
|
@ -7,7 +7,7 @@ from ..data import get_template_and_fix_tokenizer
|
|||
from ..extras.callbacks import LogCallback
|
||||
from ..extras.logging import get_logger
|
||||
from ..hparams import get_infer_args, get_train_args
|
||||
from ..model import load_model_and_tokenizer
|
||||
from ..model import load_model, load_tokenizer
|
||||
from .dpo import run_dpo
|
||||
from .orpo import run_orpo
|
||||
from .ppo import run_ppo
|
||||
|
@ -52,8 +52,9 @@ def export_model(args: Optional[Dict[str, Any]] = None):
|
|||
if model_args.adapter_name_or_path is not None and model_args.export_quantization_bit is not None:
|
||||
raise ValueError("Please merge adapters before quantizing the model.")
|
||||
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
model = load_model(tokenizer, model_args, finetuning_args) # must after fixing tokenizer to resize vocab
|
||||
|
||||
if getattr(model, "quantization_method", None) and model_args.adapter_name_or_path is not None:
|
||||
raise ValueError("Cannot merge adapters to a quantized model.")
|
||||
|
|
|
@ -10,7 +10,7 @@ from transformers.utils.versions import require_version
|
|||
from ..extras.logging import get_logger
|
||||
from ..extras.packages import is_galore_available
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
from ..model import find_all_linear_modules, load_model_and_tokenizer, load_valuehead_params
|
||||
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
|
||||
|
||||
|
||||
if is_galore_available():
|
||||
|
@ -87,16 +87,18 @@ def create_ref_model(
|
|||
)
|
||||
ref_model_args = ModelArguments(**ref_model_args_dict)
|
||||
ref_finetuning_args = FinetuningArguments(finetuning_type="lora")
|
||||
ref_model, _ = load_model_and_tokenizer(
|
||||
ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
tokenizer = load_tokenizer(ref_model_args)
|
||||
ref_model = load_model(
|
||||
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from {}".format(finetuning_args.ref_model))
|
||||
else:
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
ref_model = None
|
||||
else:
|
||||
ref_model, _ = load_model_and_tokenizer(
|
||||
model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
ref_model = load_model(
|
||||
tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
)
|
||||
logger.info("Created reference model from the model itself.")
|
||||
|
||||
|
@ -141,8 +143,9 @@ def create_reward_model(
|
|||
)
|
||||
reward_model_args = ModelArguments(**reward_model_args_dict)
|
||||
reward_finetuning_args = FinetuningArguments(finetuning_type="lora")
|
||||
reward_model, _ = load_model_and_tokenizer(
|
||||
reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
|
||||
tokenizer = load_tokenizer(reward_model_args)
|
||||
reward_model = load_model(
|
||||
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
|
||||
)
|
||||
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model))
|
||||
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
|
||||
|
|
Loading…
Reference in New Issue