support ORPO

This commit is contained in:
hiyouga 2024-03-31 18:29:50 +08:00
parent 27776c3474
commit 17bf8a2c3a
22 changed files with 395 additions and 47 deletions

View File

@ -68,16 +68,18 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/03/31] We supported **[ORPO](https://arxiv.org/abs/2403.07691)**. See `examples/lora_single_gpu` for usage.
[24/03/21] Our paper "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" is available at arXiv!
[24/03/20] We supported **FSDP+QLoRA** that fine-tunes a 70B model on 2x24GB GPUs. See `examples/fsdp_qlora` for usage.
<details><summary>Full Changelog</summary>
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See `examples/extras/loraplus` for usage.
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See `examples/extras/galore` for usage.
<details><summary>Full Changelog</summary>
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `--infer_backend vllm` to enjoy **270%** inference speed. (LoRA is not yet supported, merge it first.)
[24/02/28] We supported weight-decomposed LoRA (**[DoRA](https://arxiv.org/abs/2402.09353)**). Try `--use_dora` to activate DoRA training.
@ -165,6 +167,7 @@ You also can add a custom chat template to [template.py](src/llmtuner/data/templ
| Reward Modeling | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!NOTE]
> Use `--quantization_bit 4` argument to enable QLoRA.

View File

@ -68,16 +68,18 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 更新日志
[24/03/31] 我们支持了 **[ORPO](https://arxiv.org/abs/2403.07691)**。详细用法请参照 `examples/lora_single_gpu`
[24/03/21] 我们的论文 "[LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models](https://arxiv.org/abs/2403.13372)" 可在 arXiv 上查看!
[24/03/20] 我们支持了能在 2x24GB GPU 上微调 70B 模型的 **FSDP+QLoRA**。详细用法请参照 `examples/fsdp_qlora`
<details><summary>展开日志</summary>
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 `examples/extras/loraplus`
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 `examples/extras/galore`
<details><summary>展开日志</summary>
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `--infer_backend vllm` 来获得 **270%** 的推理速度。(尚不支持 LoRA请先合并权重。
[24/02/28] 我们支持了 **[DoRA](https://arxiv.org/abs/2402.09353)** 微调。请使用 `--use_dora` 参数进行 DoRA 微调。
@ -165,6 +167,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
| 奖励模型训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| PPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
> [!NOTE]
> 请使用 `--quantization_bit 4` 参数来启用 QLoRA 训练。

View File

@ -34,6 +34,8 @@ If you are using a custom dataset, please provide your dataset definition in the
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
----
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
```json
@ -84,6 +86,10 @@ For the preference datasets, the `response` column should be a string list whose
}
```
Remember to set `"ranking": true` for the preference datasets.
----
The dataset in sharegpt format should follow the below format:
```json

View File

@ -34,6 +34,8 @@
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
----
该项目目前支持两种格式的数据集:**alpaca** 和 **sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
```json
@ -84,6 +86,10 @@
}
```
添加偏好数据集需要额外指定 `"ranking": true`
----
而 sharegpt 格式的数据集按照以下方式组织:
```json

View File

@ -1,8 +1,9 @@
Usage:
- `pretrain.sh`: do pre-train (optional)
- `sft.sh`: do supervised fine-tune
- `sft.sh`: do supervised fine-tuning
- `reward.sh`: do reward modeling (must after sft.sh)
- `ppo.sh`: do PPO training (must after sft.sh and reward.sh)
- `dpo.sh`: do DPO training (must after sft.sh)
- `orpo.sh`: do ORPO training
- `predict.sh`: do predict (must after sft.sh and dpo.sh)

View File

@ -0,0 +1,32 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage orpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset comparison_gpt4_en \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,6 +1,15 @@
from .collator import PairwiseDataCollatorWithPadding
from .loader import get_dataset
from .template import Template, get_template_and_fix_tokenizer, templates
from .utils import Role, split_dataset
__all__ = ["get_dataset", "Template", "get_template_and_fix_tokenizer", "templates", "Role", "split_dataset"]
__all__ = [
"PairwiseDataCollatorWithPadding",
"get_dataset",
"Template",
"get_template_and_fix_tokenizer",
"templates",
"Role",
"split_dataset",
]

View File

@ -0,0 +1,51 @@
from dataclasses import dataclass
from typing import Any, Dict, List, Sequence, Tuple
import torch
from transformers import DataCollatorForSeq2Seq
@dataclass
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
r"""
Data collator for pairwise data.
"""
def _pad_labels(self, batch: torch.Tensor, positions: List[Tuple[int, int]]) -> torch.Tensor:
r"""
Masks out the input ids except for the responses.
"""
padded_labels = []
for feature, (prompt_len, answer_len) in zip(batch, positions):
if self.tokenizer.padding_side == "left":
start, end = feature.size(0) - answer_len, feature.size(0)
else:
start, end = prompt_len, prompt_len + answer_len
padded_tensor = self.label_pad_token_id * torch.ones_like(feature)
padded_tensor[start:end] = feature[start:end]
padded_labels.append(padded_tensor)
return torch.stack(padded_labels, dim=0).contiguous() # in contiguous memory
def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
r"""
Pads batched data to the longest sequence in the batch.
We generate 2 * n examples where the first n examples represent chosen examples and
the last n examples represent rejected examples.
"""
concatenated_features = []
label_positions = []
for key in ("chosen_ids", "rejected_ids"):
for feature in features:
prompt_len, answer_len = len(feature["prompt_ids"]), len(feature[key])
concatenated_features.append(
{
"input_ids": feature["prompt_ids"] + feature[key],
"attention_mask": [1] * (prompt_len + answer_len),
}
)
label_positions.append((prompt_len, answer_len))
batch = super().__call__(concatenated_features)
batch["labels"] = self._pad_labels(batch["input_ids"], label_positions)
return batch

View File

@ -117,7 +117,6 @@ def get_dataset(
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo"],
# split: Optional[str] = "train", # TODO: add split
) -> Union["Dataset", "IterableDataset"]:
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
if data_args.train_on_prompt and template.efficient_eos:
@ -138,6 +137,9 @@ def get_dataset(
with training_args.main_process_first(desc="load dataset"):
all_datasets = []
for dataset_attr in get_dataset_list(data_args):
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
raise ValueError("The dataset is not applicable in the current training stage.")
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
dataset = merge_dataset(all_datasets, data_args, training_args)

View File

@ -23,16 +23,18 @@ def preprocess_pretrain_dataset(
) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
if not data_args.packing:
return tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
if not data_args.packing:
if data_args.template == "gemma":
text_examples = [tokenizer.bos_token + example for example in text_examples]
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
else:
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}
total_length = len(concatenated_examples[list(concatenated_examples.keys())[0]])
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()

View File

@ -44,7 +44,7 @@ def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
max_target_len = int(max_len * (target_len / (source_len + target_len)))
max_target_len = max(max_target_len, reserved_label_len)
max_source_len = max_len - max_target_len
max_source_len = max_len - min(max_target_len, target_len)
return max_source_len, max_target_len

View File

@ -134,6 +134,7 @@ class LogCallback(TrainerCallback):
eval_loss=state.log_history[-1].get("eval_loss", None),
predict_loss=state.log_history[-1].get("predict_loss", None),
reward=state.log_history[-1].get("reward", None),
accuracy=state.log_history[-1].get("rewards/accuracies", None),
learning_rate=state.log_history[-1].get("learning_rate", None),
epoch=state.log_history[-1].get("epoch", None),
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,

View File

@ -39,9 +39,12 @@ TRAINING_STAGES = {
"Reward Modeling": "rm",
"PPO": "ppo",
"DPO": "dpo",
"ORPO": "orpo",
"Pre-Training": "pt",
}
STAGES_USE_PAIR_DATA = ["rm", "dpo", "orpo"]
V_HEAD_WEIGHTS_NAME = "value_head.bin"
V_HEAD_SAFE_WEIGHTS_NAME = "value_head.safetensors"

View File

@ -110,6 +110,10 @@ class RLHFArguments:
default=0.0,
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
)
orpo_beta: float = field(
default=0.1,
metadata={"help": "The beta (lambda) parameter in ORPO loss representing the weight of the SFT loss."},
)
ppo_buffer_size: int = field(
default=1,
metadata={"help": "The number of mini-batches to make experience buffer in a PPO optimization step."},
@ -209,7 +213,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
default=False,
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
)
stage: Literal["pt", "sft", "rm", "ppo", "dpo"] = field(
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "orpo"] = field(
default="sft",
metadata={"help": "Which stage will be performed in training."},
)

View File

@ -74,7 +74,7 @@ class CustomDPOTrainer(DPOTrainer):
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def sft_loss(self, chosen_logits: torch.FloatTensor, chosen_labels: torch.LongTensor) -> torch.Tensor:
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
r"""
Computes supervised cross-entropy loss of given labels under the given logits.
@ -85,8 +85,8 @@ class CustomDPOTrainer(DPOTrainer):
return -all_logps
def concatenated_forward(
self, model: "PreTrainedModel", batch: Dict[str, torch.Tensor]
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error
all_logits = model(
@ -107,9 +107,9 @@ class CustomDPOTrainer(DPOTrainer):
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: Dict[str, torch.Tensor],
batch: Dict[str, "torch.Tensor"],
train_eval: Literal["train", "eval"] = "train",
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
r"""
Computes the DPO loss and other metrics for the given batch of inputs for train or test.
"""
@ -142,21 +142,22 @@ class CustomDPOTrainer(DPOTrainer):
reference_chosen_logps,
reference_rejected_logps,
)
batch_loss = losses.mean()
if self.ftx_gamma > 1e-6:
batch_size = batch["input_ids"].size(0) // 2
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
batch_loss += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels).mean()
reward_accuracies = (chosen_rewards > rejected_rewards).float()
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.cpu().mean()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.cpu().mean()
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.cpu().mean()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().cpu().mean()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().cpu().mean()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().cpu().mean()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().cpu().mean()
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.cpu().mean()
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.cpu().mean()
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.cpu().mean()
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics["{}logps/rejected".format(prefix)] = policy_rejected_logps.detach().cpu().mean()
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().cpu().mean()
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().cpu().mean()
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().cpu().mean()
return losses.mean(), metrics
return batch_loss, metrics

View File

@ -2,13 +2,12 @@
from typing import TYPE_CHECKING, List, Optional
from ...data import get_dataset, split_dataset
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.ploting import plot_loss
from ...hparams import ModelArguments
from ...model import load_model, load_tokenizer
from ..utils import create_modelcard_and_push, create_ref_model
from .collator import DPODataCollatorWithPadding
from .trainer import CustomDPOTrainer
@ -29,7 +28,7 @@ def run_dpo(
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
data_collator = DPODataCollatorWithPadding(
data_collator = PairwiseDataCollatorWithPadding(
tokenizer=tokenizer,
pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
@ -64,7 +63,7 @@ def run_dpo(
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "accuracy"])
# Evaluation
if training_args.do_eval:

View File

@ -0,0 +1,4 @@
from .workflow import run_orpo
__all__ = ["run_orpo"]

View File

@ -0,0 +1,150 @@
from collections import defaultdict
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from transformers import Trainer
from trl import DPOTrainer
from trl.trainer.utils import disable_dropout_in_model
from ...extras.constants import IGNORE_INDEX
from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
from transformers import PreTrainedModel
from ...hparams import FinetuningArguments
class CustomORPOTrainer(DPOTrainer):
def __init__(
self,
model: Union["PreTrainedModel", "torch.nn.Module"],
finetuning_args: "FinetuningArguments",
disable_dropout: bool = True,
**kwargs,
):
if disable_dropout:
disable_dropout_in_model(model)
self.finetuning_args = finetuning_args
self.reference_free = False
self.use_dpo_data_collator = True # hack to avoid warning
self.generate_during_eval = False # disable at evaluation
self.label_pad_token_id = IGNORE_INDEX
self.padding_value = 0
self.is_encoder_decoder = model.config.is_encoder_decoder
self.precompute_ref_log_probs = False
self._precomputed_train_ref_log_probs = False
self._precomputed_eval_ref_log_probs = False
self._peft_has_been_casted_to_bf16 = False
self.beta = finetuning_args.orpo_beta
self._stored_metrics = defaultdict(lambda: defaultdict(list))
Trainer.__init__(self, model=model, **kwargs)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
r"""
Computes supervised cross-entropy loss of given labels under the given logits.
Returns:
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
"""
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
return -all_logps
# Borrowed from:
# https://github.com/huggingface/trl/blob/0ee349dcd43b0f4b3169449f16751c38ac4a609f/trl/trainer/orpo_trainer.py#L592
def odds_ratio_loss(
self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor"
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
r"""
Computes ORPO's odds ratio (OR) loss.
Args:
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
Returns:
A tuple of five tensors: (losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen).
"""
# Derived from Eqs. (4) and (7) from https://arxiv.org/abs/2403.07691 by using log identities and exp(log(P(y|x)) = P(y|x)
log_odds = (chosen_logps - rejected_logps) - (
torch.log(1 - torch.exp(chosen_logps)) - torch.log(1 - torch.exp(rejected_logps))
)
ratio = F.logsigmoid(log_odds)
losses = self.beta * ratio
chosen_rewards = self.beta * chosen_logps.detach()
rejected_rewards = self.beta * rejected_logps.detach()
return losses, chosen_rewards, rejected_rewards, ratio, log_odds
def concatenated_forward(
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
all_logits = model(
input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], return_dict=True
).logits.to(torch.float32)
all_logps = self.get_batch_logps(
all_logits,
batch["labels"],
average_log_prob=False,
label_pad_token_id=self.label_pad_token_id,
)
batch_size = batch["input_ids"].size(0) // 2
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
def get_batch_loss_metrics(
self,
model: "PreTrainedModel",
batch: Dict[str, "torch.Tensor"],
train_eval: Literal["train", "eval"] = "train",
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
r"""
Computes the ORPO loss and other metrics for the given batch of inputs for train or test.
"""
metrics = {}
chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch)
losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss(
chosen_logps, rejected_logps
)
batch_size = batch["input_ids"].size(0) // 2
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
sft_loss = self.sft_loss(chosen_logits, chosen_labels)
batch_loss = (sft_loss - losses).mean()
reward_accuracies = (chosen_rewards > rejected_rewards).float()
prefix = "eval_" if train_eval == "eval" else ""
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.cpu().mean()
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.cpu().mean()
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.cpu().mean()
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).cpu().mean()
metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().cpu().mean()
metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().cpu().mean()
metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().cpu().mean()
metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().cpu().mean()
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().cpu().mean()
metrics["{}log_odds_ratio".format(prefix)] = log_odds_ratio.detach().cpu().mean()
metrics["{}log_odds_chosen".format(prefix)] = log_odds_chosen.detach().cpu().mean()
return batch_loss, metrics

View File

@ -0,0 +1,68 @@
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
from typing import TYPE_CHECKING, List, Optional
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
from ...extras.constants import IGNORE_INDEX
from ...extras.ploting import plot_loss
from ...hparams import ModelArguments
from ...model import load_model, load_tokenizer
from ..utils import create_modelcard_and_push
from .trainer import CustomORPOTrainer
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments
def run_orpo(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
tokenizer = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm")
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
data_collator = PairwiseDataCollatorWithPadding(
tokenizer=tokenizer,
pad_to_multiple_of=8,
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
)
# Update arguments
training_args.remove_unused_columns = False # important for pairwise dataset
# Initialize our Trainer
trainer = CustomORPOTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
**split_dataset(dataset, data_args, training_args),
)
# Training
if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "accuracy"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)

View File

@ -2,13 +2,12 @@
from typing import TYPE_CHECKING, List, Optional
from ...data import get_dataset, split_dataset
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
from ...extras.callbacks import FixValueHeadModelCallback
from ...extras.misc import fix_valuehead_checkpoint
from ...extras.ploting import plot_loss
from ...model import load_model, load_tokenizer
from ..utils import create_modelcard_and_push
from .collator import PairwiseDataCollatorWithPadding
from .metric import compute_accuracy
from .trainer import PairwiseTrainer

View File

@ -9,6 +9,7 @@ from ..extras.logging import get_logger
from ..hparams import get_infer_args, get_train_args
from ..model import load_model_and_tokenizer
from .dpo import run_dpo
from .orpo import run_orpo
from .ppo import run_ppo
from .pt import run_pt
from .rm import run_rm
@ -36,6 +37,8 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "dpo":
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "orpo":
run_orpo(model_args, data_args, training_args, finetuning_args, callbacks)
else:
raise ValueError("Unknown task.")

View File

@ -11,6 +11,7 @@ from ..extras.constants import (
DEFAULT_MODULE,
DEFAULT_TEMPLATE,
PEFT_METHODS,
STAGES_USE_PAIR_DATA,
SUPPORTED_MODELS,
TRAINING_STAGES,
DownloadSource,
@ -127,7 +128,7 @@ def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
def list_dataset(dataset_dir: str = None, training_stage: str = list(TRAINING_STAGES.keys())[0]) -> "gr.Dropdown":
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"]
ranking = TRAINING_STAGES[training_stage] in STAGES_USE_PAIR_DATA
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
return gr.Dropdown(value=[], choices=datasets)